
1

0.1 Install Unity Software

Steps:
Step 1: Download and install Unity Hub

Step 2: Install a new version of Unity

Step 3: Sign in or create a new Unity ID

Example of progress by end of lesson

Length: 20 minutes

Overview: If you do not already have Unity installed on your computer, the first thing

you need to do before you get started on the course is install it. In order to do

so, if you don’t have one already, you will need to create a Unity ID. When you

install the software, you will install Unity Hub, which allows you to manage

your installations and projects, the Unity engine itself, and Visual studio, the

Integrated Development Environment (or IDE) you will use to code in C#.

Project
Outcome:

Unity Hub, the Unity Editor, and Visual Studio will all be installed on your

computer.

Learning
Objectives:

By the end of this lesson, you will be able to:

- Use Unity Hub to install and manage versions of Unity on your computer

- Create a new Unity ID to be able to access of all Unity’s services

© Unity 2019 Lesson 0.1 - Install Unity Software

2

Step 1: Download and install Unity Hub
In order to most effectively download, install, and manage the versions of Unity on our

computer, we will use something called Unity Hub.

1. In a new tab, either Google “Download Unity Hub”

or go to https://unity3d.com/get-unity/download,

then click to Download Unity Hub
2. From your Downloads folder, double-click on the

Unity Hub Setup file to begin the installation

3. Agree to Unity Terms of Service and follow the

instructions to install Unity Hub

4. Open Unity Hub for the first time and click on the

Projects, Learn, and Installs tabs

- Warning: If you already have a version

of Unity that is version 2018+, you do

not need to complete this lesson

- Warning: Don’t download Unity directly

- download Unity Hub

- Warning: Will be different on a Mac vs

a PC - on a Mac, you just have to drag

the icon into the Applications folder,

then open it from there

- Don’t worry: There might be old

projects or other versions in the list

© Unity 2019 Lesson 0.1 - Install Unity Software

https://unity3d.com/get-unity/download

3

Step 2: Install a new version of Unity
Now that Unity Hub is installed, we need to actually install a new version of Unity and our code

editor, Visual Studio

1. In the Installs tab click to Add a new Unity

Version

2. Choose either 2018.4.1f1 (if you would like

your version of Unity to look exactly the

same as the videos) or anything higher than

that

3. Choose to install Visual Studio (for Mac or

PC)

4. Accept any necessary terms and conditions

and begin installation

- Don’t worry: This may take a very long time,

depending on the speed of your computer

and internet connection as it has to first

download, then install both Unity and Visual

Studio

- Warning: You will likely be asked to provide

your computer’s admin password

- New Concept: LTS stands for Long-term

support, which means Unity will officially

support it and keep it up-to-date for 2 years

- Tip: You can continue onto next step of

creating a Unity ID while it is installing

© Unity 2019 Lesson 0.1 - Install Unity Software

4

Step 3: Sign in or create a new Unity ID
In order to access a lot of important Unity services, including the Unity Asset Store, we need to

be signed in with a Unity ID

1. From the Account menu in Unity Hub, click to Sign in

2. If you already have an account, sign in - otherwise,

you can sign in quickly through Google or Facebook

or Create a New Unity ID

- New Concept: What is a Unity ID?

- Warning: If you create a new Unity

ID, you will be asked to complete a

questionnaire

Lesson Recap
New Progress ● Unity Hub, Unity Editor 2018+, and Visual Studio installed

● Signed into Unity Hub

New Concepts
and Skills

● Unity Hub and its features

● Editor versions, including LTS releases

● Visual Studio

● Unity IDs

Next Lesson ● We will actually create a new project and open the Unity Editor to start

creating

© Unity 2019 Lesson 0.1 - Install Unity Software

1

1.1 Start your 3D Engines

Steps:
Step 1: Make a course folder and new project

Step 2: Import assets and open Prototype 1

Step 3: Add your vehicle to the scene

Step 4: Add an obstacle and reposition it

Step 5: Locate your camera and run the game

Step 6: Move the camera behind the vehicle

Step 7: Customize the interface layout

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will create your very first game project in Unity Hub. You
will choose and position a vehicle for the player to drive and an obstacle for
them to hit or avoid. You will also set up a camera for the player to see
through, giving them a perfect view of the scene. Throughout this process,
you will learn to navigate the Unity Editor and grow comfortable moving
around in 3D Space. Lastly, you will customize your own window layout for
the Unity Editor.

Project
Outcome:

You will have a vehicle and obstacle positioned on the road and the camera
set up perfectly behind the vehicle. You will also have a new custom Unity
layout, perfectly optimized for editing.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create a new project through Unity Hub
- Navigate 3D space and the Unity Editor comfortably
- Add and manipulate objects in the scene to position them where you want
- Position a camera in an ideal spot for your game
- Control the layout of Unity Editor to suit your needs

© Unity 2019 Lesson 1.1 - Start your 3D Engines

2

Step 1: Make a course folder and new project
The first thing we need to do is create a folder that will hold all of our course projects, then create a new

Unity project inside it for Prototype 1.

1. On your desktop (or somewhere else you will remember),
Right-click > create New Folder, then name it “Create with Code”

2. Open Unity Hub and click New
3. Name the project “Prototype 1”, select the correct version of

Unity, set the location to the new “Create with Code” folder, and
select the 3D template

4. Click Create Project, then wait for Unity to open

- Don’t worry: Unity might
take a while to open, so
just give it some time

Step 2: Import assets and open Prototype 1
Now that we have an empty project open, we need to import the assets for Prototype 1 and open the

scene

1. Click on one of the links to access the Prototype 1 starter
files, then download and import them into Unity

2. In the Project window, in Assets > Scenes > double-click on
the Prototype 1 scene to open it

3. Delete the Sample Scene without saving
4. Right-click + drag to look around at the start of the road

- Warning: You’re free to look
around, but don’t try moving
yet

- Warning: Be careful playing
with this interface, don’t click
on anything else yet

- New Concept: Project Window

© Unity 2019 Lesson 1.1 - Start your 3D Engines

3

Step 3: Add your vehicle to the scene
Since we’re making a driving simulator, we need to add our own vehicle to the scene.

1. In the Project Window, open Assets > Course Library >

Vehicles, then drag a vehicle into the Hierarchy
2. Hold right-click + WASD to fly to the vehicle, then try to

rotate around it
3. Press F in the Scene view to focus on it, then use the scroll

wheel to zoom in and out and hold the scroll wheel to pan
4. Press F to focus on it, hold alt+left-click to rotate around it

perfectly
5. If anything goes wrong, press Ctrl/Cmd+Z to Undo until it’s

fixed

- New: Hierarchy
- New: Undo (Cmd/Ctrl + Z) and

Redo (Cmd+Shift+Z / Ctrl+Y)
- Warning: Mouse needs to be

in scene view for F/focus to
work

- New Technique: Scroll Wheel
for Zoom and Pan

Step 4: Add an obstacle and reposition it
The next thing our game needs is an obstacle! We need to choose one and position it in front of

the vehicle.
1. Go to Course Library > Obstacles and drag an obstacle

directly into scene view
2. In the Inspector for your obstacle, in the top-right of the

Transform component, click the Gear Icon > Reset Position

3. In the Inspector, change the XYZ Location to 0,0,25
4. In the hierarchy, Right-click > Rename your two objects as

“Vehicle” and “Obstacle”

- New Concept: XYZ location,
rotation and scale

- New Concept: Inspector

© Unity 2019 Lesson 1.1 - Start your 3D Engines

4

Step 5: Locate your camera and run the game
Now that we’ve set up our vehicle and obstacle, let’s try running the game and looking through

the camera.

1. Select the Camera in the hierarchy, then press F to focus
on it

2. Press the Play button to run your Game, then press Play
again to stop it

- New Concept: Game View vs
Scene View

- New Technique: Stop/Play
(Cmd/Ctrl + P)

Step 6: Move the camera behind the vehicle
In order for the player to properly view our game, we should position and angle the camera in a

good spot behind the vehicle
1. Use the Move and Rotate tools to move the camera behind the

vehicle looking down on it
2. Hold Ctrl/Cmd to move the camera by whole units

- New Technique:
Snapping (Cmd/Ctrl +
Drag)

- New Concept: Rotation
on the XYZ Axes

© Unity 2019 Lesson 1.1 - Start your 3D Engines

5

Step 7: Customize the interface layout
Last but not least, we need to customize the Unity Editor layout so that it’s perfect for editing

our project.
1. In the top-right corner, change the layout from “Default” to “Tall”,
2. Move Game view beneath Scene view
3. In the Project window, click on the little drop-down menu in the

top-right and choose “One-column layout”
4. In the layout Dropdown, save a new Layout and call it “My

Layout”

- New Concept: Layouts

Lesson Recap
New
Functionality

● Project set up with assets imported
● Vehicle positioned at the start of the road
● Obstacle positioned in front of the vehicle
● Camera positioned behind vehicle

New Concepts
and Skills

● Create a new project
● Import assets
● Add objects to the scene
● Game vs Scene view
● Project, Hierarchy, Inspector windows
● Navigate 3D space
● Move and Rotate tools
● Customize the layout

Next Lesson ● We’ll really make this interactive by writing our first line of code in C# to
make the vehicle move and have it collide with other objects in the scene

© Unity 2019 Lesson 1.1 - Start your 3D Engines

1

1.2 Pedal to the Metal

Steps:

Step 1: Create and apply your first script

Step 2: Add a comment in the Update() method

Step 3: Give the vehicle a forward motion

Step 4: Use a Vector3 to move forward

Step 5: Customize the vehicle’s speed

Step 6: Add RigidBody components to objects

Step 7: Duplicate and position the obstacles

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson you will make your driving simulator come alive. First you will

write your very first lines of code in C#, changing the vehicle’s position and

allowing it to move forward. Next you will add physics components to your

objects, allowing them to collide with one another. Lastly, you will learn how

to duplicate objects in the hierarchy and position them along the road.

Project

Outcome:

You will have a moving vehicle with its own C# script and a road full of

objects, all of which may collide with each other using physics components.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Create C# scripts and apply them to objects

- Use Visual Studio and a few of its basic features

- Write comments to make your code more readable

- Utilize fundamental C# methods and classes like transform.Translate and

Vector3

- Add Rigidbody and Collider components to allow objects to collide

realistically

- Duplicate objects in the hierarchy to populate your scene

© Unity 2019 Lesson 1.2 - Pedal to the Metal

2

Step 1: Create and apply your first script

We will start this lesson by creating our very first C# script that will control the vehicle’s
movement.
1. In the Project window, Right-click > Create > Folder

named “Scripts”

2. In the “Scripts” folder, Right-click > Create > C#
Script named “PlayerController”

3. Drag the new script onto the Vehicle object

4. Click on the Vehicle object to make sure it was

added as a Component in the Inspector

- New Concept: C# Scripts

- Warning: Type the script name as

soon as the script is created, since it

adds that name to the code. If you

want to edit the name, just delete it

and make a new script

- New Concept: Components

Step 2: Add a comment in the Update() method

In order to make the vehicle move forward, we have to first open our new script and get familiar
with the development environment.

1. Double-click on the script to open it in Visual

Studio

2. In the Update() method, add a comment that you

will: // Move the vehicle forward

- New: Start vs Update functions

- New: Comments

void Update()
{
 // Move the vehicle forward
}

© Unity 2019 Lesson 1.2 - Pedal to the Metal

3

Step 3: Give the vehicle a forward motion

Now that we have the comment saying what we WILL program - we have to write a line of code
that will actually move the vehicle forward.

1. Under your new comment, type transform.tr, then

select Translate from the autocomplete menu

2. Type (, add 0, 0, 1 between the parentheses, and

complete the line with a semicolon (;)

3. Press Ctrl/Cmd + S to save your script, then run

your game to test it

- New Function: transform.Translate

- New Concept: Parameters

- Warning: Don’t use decimals yet. Only

whole numbers!

void Update()
{
 // Move the vehicle forward
 transform.Translate(0, 0, 1);
}

Step 4: Use a Vector3 to move forward

We’ve programmed the vehicle to move along the Z axis, but there’s actually a cleaner way to
code this.

1. Delete the 0, 0, 1 you typed and use auto-complete

to replace it with Vector3.forward

- New Concept: Documentation

- New Concept: Vector3

- Warning: Make sure to save time and

use Autocomplete! Start typing and VS

Code will display a popup menu with

recommended code.

void Update()
{
 // Move the vehicle forward
 transform.Translate(0, 0, 1 Vector3.forward);
}

© Unity 2019 Lesson 1.2 - Pedal to the Metal

4

Step 5: Customize the vehicle’s speed

Right now, the speed of the vehicle is out of control! We need to change the code in order to
adjust this.

1. Add * Time.deltaTime and run your game

2. Add * 20 and run your game

- New Concept: Math symbols in C#

- New Function: Time.deltaTime

void Update()
{
 // Move the vehicle forward
 transform.Translate(Vector3.forward * Time.deltaTime * 20);
}

Step 6: Add RigidBody components to objects

Right now, the vehicle goes right through the box! If we want it to be more realistic, we need to
add physics.

1. Select the Vehicle, then in the hierarchy click Add

Component and select RigidBody

2. Select the Obstacle, then in the hierarchy click Add

Component and select RigidBody

3. In the RigidBody component properties, increase

the mass of vehicle and obstacle to be about what

they would be in kilograms and test again

- New Concept: Rigidbody Component

- New Concept: Collider Component

- Tip: Adjust the mass of the vehicle and

the obstacle, and test the collision

results

© Unity 2019 Lesson 1.2 - Pedal to the Metal

5

Step 7: Duplicate and position the obstacles

Last but not least, we should duplicate the obstacle and make the road more treacherous for
the vehicle.

1. Click and drag your obstacle to the bottom of the

list in the hierarchy

2. Press Ctrl/Cmd+D to duplicate the obstacle and

move it down the Z axis

3. Repeat this a few more times to create more

obstacles

4. After making a few duplicates, select one in the

hierarchy and hold ctrl + click to select multiple

obstacles, then duplicate those

- New Technique: Duplicate

(Ctrl/Cmd+D)

- Tip: Try using top-down view to make

this easier

- Tip: Try using the inspector to space

your obstacles exactly 25 apart

Lesson Recap
New

Functionality

● Vehicle moves down the road at a constant speed

● When the vehicle collides with obstacles, they fly into the air

New Concepts

and Skills

● C# Scripts

● Start vs Update

● Comments

● Methods

● Pass parameters

● Time.deltaTime

● Multiply (*) operator

● Components

● Collider and RigidBody

Next Lesson ● We’ll add some code to our camera, so that it follows the player as they

drive along the road.

© Unity 2019 Lesson 1.2 - Pedal to the Metal

1

1.3 High Speed Chase

Steps:
Step 1: Add a speed variable for your vehicle

Step 2: Create a new script for the camera

Step 3: Add an offset to the camera position

Step 4: Make the offset into a Vector3 variable

Step 5: Edit the playmode tint color

Example of project by end of lesson

Length: 50 minutes

Overview: Keep your eyes on the road! In this lesson you will code a new C# script for
your camera, which will allow it to follow the vehicle down the road and give
the player a proper view of the scene. In order to do this, you’ll have to use a
very important concept in programming: variables.

Project
Outcome:

The camera will follow the vehicle down the road through the scene, allowing
the player to see where it’s going.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Declare variables properly and understand that variables can be different

data types (float, Vector3, GameObject)
- Initialize/assign variables through code or through the inspector to set

them with appropriate values
- Use appropriate access modifiers (public/private) for your variables in

order to make them easier to change in the inspector

© Unity 2019 Lesson 1.3 - High Speed Chase

2

Step 1: Add a speed variable for your vehicle
We need an easier way to change the vehicle’s speed and allow it to be accessed from the
inspector. In order to do so what we need is something called a variable.
1. In PlayerController.cs, add public float speed =

5.0f; at the top of the class
2. Replace the speed value in the Translate method

with the speed variable, then test
3. Save the script, then edit the speed value in the

inspector to get the speed you want

- New Concept: Floats and Integers
- New Concept: Assigning Variables
- New Concept: Access Modifiers

public float speed = 20;

void Update()
{

 transform.Translate(Vector3.forward * Time.deltaTime * 20 speed);
}

Step 2: Create a new script for the camera
The camera is currently stuck in one position. If we want it to follow the player, we have to
make a new script for the camera.
1. Create a new C# script called FollowPlayer and

attach it to the camera
2. Add public GameObject player; to the top of the

script
3. Select the Main Camera, then, drag the player

object onto the empty player variable in the
Inspector

4. In Update(), assign the camera’s position to the
player’s position, then test

- Warning: Remember to capitalize your
script name correctly and rename it as
soon as the script is created!

- Warning: It’s really easy to forget to
assign the player variable in the
inspector

- Don’t worry: The camera will be under
the car... weird! We will fix that soon

public GameObject player;

void Update()
{

 transform.position = player.transform.position;
}

© Unity 2019 Lesson 1.3 - High Speed Chase

3

Step 3: Add an offset to the camera position
We need to move the camera’s position above the vehicle so that the player can have a decent
view of the game.
1. In the line in the Update method add + new

Vector3(0, 5, -7), then test
- New Concept: Vector3 in place of

coordinates
- Tip: You need “new Vector3()” because

3 numbers in a row could mean
anything

- New Concept: FixedUpdate
- Warning: Remember to update your

comments and maintain their
accuracy!

public GameObject player;

void Update()
{

 transform.position = player.transform.position + new Vector3(0, 5, -7);
}

Step 4: Make the offset into a Vector3 variable
We’ve fixed the camera’s position, but we may want to change it later! We need an easier way to
access the offset.

1. At the top of FollowPlayer.cs, declare private

Vector3 offset;
2. Copy the new Vector3() code and assign it to that

variable
3. Replace the original code with the offset variable
4. Test and save

- Don’t worry: Pay no mind to the read
only warning

- Tip: Whenever possible, make variables!
You never want hard values in the
middle of your code

public GameObject player;
private Vector3 offset = new Vector3(0, 5, -7);

void Update()
{

 transform.position = player.transform.position + new Vector3(0, 5, -7) offset;
}

© Unity 2019 Lesson 1.3 - High Speed Chase

4

Step 5: Edit the playmode tint color
If we’re going to be creating and editing variables, we need to make sure we don’t accidentally
try to make changes when in “Play mode”

1. From the top menu, go to Edit > Preferences
(Windows) or Unity > Preferences (Mac)

2. In the left menu, choose Colors, then edit the
“Playmode tint” color to have a slight color

3. Play your project to test it, then close your
preferences

- Tip: Try editing a variable in play mode,
then stopping - it will revert

- Warning: Don’t go crazy with the colors
or it will be distracting

Lesson Recap
New
Functionality

● Camera follows the vehicle down the road at a set offset distance

New Concepts
and Skills

● Variables
● Data types
● Access Modifiers
● Declare and initialize variables

Next Lesson ● In the next lesson, we’ll add our last lines of code to take control of our car
and be able to drive it around the scene.

© Unity 2019 Lesson 1.3 - High Speed Chase

1

1.4 Step into the Driver’s Seat

Steps:

Step 1: Allow the vehicle to move left/right

Step 2: Base left/right movement on input

Step 3: Take control of the vehicle speed

Step 4: Make vehicle rotate instead of slide

Step 5: Clean your code and hierarchy

Example of project by end of lesson

Length: 50 minutes

Overview: In this lesson, we need to hit the road and gain control of the vehicle. In order
to do so, we need to detect when the player is pressing the arrow keys, then
accelerate and turn the vehicle based on that input. Using new methods,
Vectors, and variables, you will allow the vehicle to move forwards or
backwards and turn left to right.

Project

Outcome:

When the player presses the up/down arrows, the vehicle will move forward
and backward. When the player presses the left/right arrows, the vehicle will
turn.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Gain user input with Input.GetAxis, allowing the player to move in different

ways
- Use the Rotate function to rotate an object around an axis
- Clean and organize your hierarchy with Empty objects

© Unity 2019 Lesson 1.4 - Step into the Driver’s Seat

2

Step 1: Allow the vehicle to move left/right

Until now, the vehicle has only been able to move straight forward along the road. We need it to
be able to move left and right to avoid the obstacles.
1. At the top of PlayerController.cs, add a public float

turnSpeed; variable
2. In FixedUpdate(), add

transform.Translate(Vector3.right *

Time.deltaTime * turnSpeed);
3. Run your game and use the turnSpeed variable

slider to move the vehicle left and right

- New Function: Vector3.right

public float turnSpeed;

void Update()
{

 transform.Translate(Vector3.forward * Time.deltaTime * speed);

 transform.Translate(Vector3.right * Time.deltaTime * turnSpeed);
}

Step 2: Base left/right movement on input

Currently, we can only control the vehicle’s left and right movement in the inspector. We need to
grant some power to the player and allow them to control that movement for themselves.
1. In PlayerController.cs, add a new public float

horizontalInput variable
2. In FixedUpdate, assign horizontalInput =

Input.GetAxis("Horizontal");, then test to see it in
inspector

3. Add the horizontalInput variable to your left/right
Translate method to gain control of the vehicle

4. In the inspector, edit the turnSpeed and speed
variables to tweak the feel

- New: Input.GetAxis
- Tip: Edit > Project Settings > Input and

expand the Horizontal Axis to show
everything about it

- Warning: Spelling is important in string
parameters. Make sure you spell and
capitalize “Horizontal” correctly!

public float horizontalInput;

void Update()
{

 horizontalInput = Input.GetAxis("Horizontal");

 transform.Translate(Vector3.forward * Time.deltaTime * speed);
 transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);
}

© Unity 2019 Lesson 1.4 - Step into the Driver’s Seat

3

Step 3: Take control of the vehicle speed

We’ve allowed the player to control the steering wheel, but we also want them to control the gas
pedal and brake.
1. Declare a new public forwardInput variable
2. In FixedUpdate, assign forwardInput =

Input.GetAxis("Vertical");

3. Add the forwardInput variable to the forward

Translate method, then test

- Tip: It can go backwards, too!
- Warning: This is slightly confusing with

forwardInput and vertical axis

public float horizontalInput;
public float forwardInput;

void Update()
{

 horizontalInput = Input.GetAxis("Horizontal");
 forwardInput = Input.GetAxis("Vertical");

 transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);
 transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);

}

Step 4: Make vehicle rotate instead of slide

There’s something weird about the vehicle’s movement… it’s slides left to right instead of
turning. Let’s allow the vehicle to turn like a real car!

1. In FixedUpdate, call transform.Rotate(Vector3.up,
horizontalInput), then test

2. Delete the line of code that translates Right, then
test

3. Add * turnSpeed * Time.deltaTime, then test

- New: transform.Rotate
- Tip: You can always trust the official

Unity scripting API documentation

void Update()
{

 horizontalInput = Input.GetAxis("Horizontal");
 forwardInput = Input.GetAxis("Vertical");

 transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);

 transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);
 transform.Translate(Vector3.right * Time.deltaTime * turnSpeed * horizontalInput);
}

© Unity 2019 Lesson 1.4 - Step into the Driver’s Seat

4

Step 5: Clean your code and hierarchy

We added lots of new stuff in this lesson. Before moving on and to be more professional, we
need to clean our scripts and hierarchy to make them more organized.

1. In the hierarchy, Right-click > Create Empty and
rename it “Obstacles”, then drag all the obstacles
into it

2. Initialize variables with values in PlayerController,
then make all variables private (except for the
player variables)

3. Use // to add comments to each section of code

- New: Empty Object
- Tip: You don’t actually need to type

“private”, it defaults to that
- Tip: Comments are important,

especially for your future self

public private float speed = 20.0f;
public private float turnSpeed = 45.0f;
public private float horizontalInput;
public private float forwardInput;

void Update() {
 horizontalInput = Input.GetAxis("Horizontal");
 forwardInput = Input.GetAxis("Vertical");
 // Moves the car forward based on vertical input
 transform.Translate(Vector3.forward * Time.deltaTime * speed * forwardInput);

 // Rotates the car based on horizontal input
 transform.Rotate(Vector3.up, turnSpeed * horizontalInput * Time.deltaTime);
}

Lesson Recap
New

Functionality

● When the player presses the up/down arrows, the vehicle will move forward
and backward

● When the player presses the left/right arrows, the vehicle turns

New Concepts

and Skills

● Empty objects
● Get user input
● Translate vs Rotate

Next Lesson ● We made our first project! We learned alot about how unity works, we wrote
our first lines of code, and we made a driving game where our player has
full control over this vehicle!

© Unity 2019 Lesson 1.4 - Step into the Driver’s Seat

1

Challenge 1
Plane Programming

Challenge
Overview:

Use the skills you learned in the driving simulation to fly a plane around

obstacles in the sky. You will have to get the user’s input from the up and

down arrows in order to control the plane’s pitch up and down. You will also

have to make the camera follow alongside the plane so you can keep it in

view.

Challenge
Outcome:

- The plane moves forward at a constant rate

- The up/down arrows tilt the nose of the plane up and down

- The camera follows along beside the plane as it flies

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:

- Using the Vector3 class to move and rotate objects along/around an axis

- Using Time.deltaTime in the Update() method to move objects properly

- Moving and rotating objects in scene view to position them the way you want

- Assigning variables in the inspector and initializing them in code

- Implementing Input variables to control the movement/rotation of objects

based on User input

Challenge
Instructions:

- Open your Prototype 1 project

- Download the "Challenge 1 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 1 > Instructions folder, use the

Outcome video as a guide to complete the challenge

© Unity 2019 Challenge 1 - Plane Programming

2

Challenge Task Hint

 1 The plane is going

backwards

Make the plane go forward Vector3.back makes an object

move backwards, Vector3.forward

makes it go forwards

 2 The plane is going too

fast

Slow the plane down to a

manageable speed

If you multiply a value by

Time.deltaTime, it will change it

from 1x/frame to 1x/second

 3 The plane is tilting

automatically

Make the plane tilt only if the

user presses the up/down

arrows

In PlayerControllerX.cs, in Update(),

the verticalInput value is

assigned, but it’s never actually used

in the Rotate() call

 4 The camera is in front
of the plane

Reposition it so it’s beside

the plane

For the camera’s position, try X=30,
Y=0, Z=10 and for the camera’s

rotation, try X=0, Y=-90, Z=0

 5 The camera is not

following the plane

Make the camera follow the

plane

In FollowPlayerX.cs, neither the plane

nor offset variables are assigned a

value - assign the plane variable in

the camera’s inspector and assign

the offset = new Vector3(30,
0, 10) in the code

Bonus Challenge

Task

Hint

 X The plane’s propeller

does not spin

Create a script that spins the

plane’s propeller

There is a “Propeller” child object of

the plane - you should create a new

“SpinPropellerX.cs” script and make

it rotate every frame around the Z

axis.

© Unity 2019 Challenge 1 - Plane Programming

3

Challenge Solution

1 In PlayerControllerX.cs, in Update, change Vector3.back to Vector3.forward

 // move the plane forward at a constant rate

 transform.Translate(Vector3.back.forward * speed);

2 In PlayerControllerX.cs, in Update, add * Time.deltaTime to the Translate call

 // move the plane forward at a constant rate
 transform.Translate(Vector3.forward * speed * Time.deltaTime);

3 In PlayerControllerX.cs, include the verticalInput variable to the Rotate method:

 // tilt the plane up/down based on up/down arrow keys
transform.Rotate(Vector3.right * rotationSpeed * verticalInput * Time.deltaTime);

4 Change the camera’s position to (30, 0, 10) and its rotation, to (0, -90, 0)

5 To assign the plane variable, select Main Camera

in the hierarchy, then drag the Plane object onto

the “Plane” variable in the inspector

To assign the offset variable, add the value

as a new Vector3 at the top of

FollowPlane.cs:

private Vector3 offset = new Vector3(30,
0, 10);

© Unity 2019 Challenge 1 - Plane Programming

4

Bonus Challenge Solution

X1 Create a new Script called “SpinPropellerX.cs” and attach it to the “Propellor” object (which is

a child object of the Plane):

X2 In RotatePropellerX.cs, add a new propellorSpeed variable and Rotate the propeller on the Z

axis

 private float propellorSpeed = 1000;

void Update() {
 transform.Rotate(Vector3.forward, propellorSpeed * Time.deltaTime);
}

© Unity 2019 Challenge 1 - Plane Programming

1

Unit 1 Lab
Project Design Document

Steps:

Step 1: Understand what a Personal Project is

Step 2: Review Design Doc examples

Step 3: Complete your Project Concept V1

Step 4: Complete your Project Timeline

Step 5: Complete your MVP sketch

Example of progress by end of lab

Length: 60 minutes

Overview: In this first ever Lab session, you will begin the preliminary work required to

successfully create a personal project in this course. First, you’ll learn what a

personal project is, what the goals for it are, and what the potential

limitations are. Then you will take the time to come up with an idea and

outline it in detail in your Design Document, including a timeline for when you

hope to complete certain features. Finally, you will take some time to draw a

sketch of your project to help you visualize it and share your idea with others.

Project

Outcome:

The Design Document will be filled out, including the concept, the timeline,

and a preliminary sketch of the minimum viable product.

Learning

Objectives:

By the end of this lab, you will be able to:

- Come up with an idea for a project with a scope appropriate to your time

and available resources

- Think through a project’s concept in order to better understand its

requirements

- Plan out a project’s milestones with due dates to better understand the

production cycle and to hold yourself more accountable

- Create a simple sketch / storyboard in order to better communicate your

ideas

© Unity 2019 Lab 1 - Project Design Document

2

Step 1: Understand what a Personal Project is

Before we get started on our personal projects, we should make sure we understand our
primary goals.

Explain What Personal Projects (PP’s) are:

● Projects they will be working on on their own with less direct instruction

● A chance to create a project they really care about with their own creative choices

● An opportunity to apply and solidify skills they learned in lessons and challenges

Demo The Core Functionality and skills they will learn from each of the 5 Units by showcasing

completed versions of each Prototype:

1. Driving Simulation: player control through user input

2. Feed the Animals: basic gameplay by spawning random objects on an interval

and trying to collect them, avoid them, or fire projectiles at them

3. Run and Jump: sound and effects, and animation (of background or player)

4. Sumo Battle: gameplay mechanics, powerups and/or increasing difficulty

5. Quick Click: user interface with title screen, game over screen, and score display

Unit 1

Unit 2

Unit 3

Unit 4 Unit 5

Explain Goal / Evaluation of the PP’s are based on:

● Completeness - how much of what you set out to complete did you actually finish

● Uniqueness / Application - how much did you add new design and dev features,

extending and applying your skills in novel and creative ways

NOTE - These two priorities are at odds and it’s up to you to find the balance

Explain You just need a Minimum Viable Product (an MVP) - doesn’t have to be polished

● Definition: a product with just enough features to satisfy early customers, and to

provide feedback for future product development

● This will allow them to focus on the core of the project and not get distracted by

flashy features and graphics that don’t matter as much

Warning There will be a temptation to try and do too much that is completely different from what

anything in the course (e.g. “I want to make “Madden + Facebook + Google!”)

● There’s lots of time to try and do really ambitious crazy projects in the future, but

for now on this first project, try to stick closely to the core functionality you’re

learning

● The only limitation is time - with enough time, they could make anything!

Discuss Make sure students understand what the Personal Project is, allowing them to ask

questions

© Unity 2019 Lab 1 - Project Design Document

3

Step 2: Review Design Doc examples

Now that we have some idea of what a Personal Project is, let’s look a couple examples

1. Click on the link to open the “Project Design Doc

[EXAMPLE]” and read through the Project Concept

2. Click on the link to open a new “Project Design

Doc” as either a Google Doc Copy, Word Doc or

PDF

3. Think through how you would fill out a design doc

for other games

- Warning: you will need to be signed

into a Google account to be able to

make a copy of the Google Doc version

- Tip: Search YouTube for “gameplay” of

the classic game you want

- Explanation: Notice that sections

correspond to what you’ll be learning

with each unit/prototype

Step 3: Complete your Project Concept V1

Now that we’ve seen some examples, let’s try to come up with our own project concept.
1. Add your name and date in

the top-right corner

2. Fill in the blanks for your

project concept

3. Share your project concept

with someone else to make

sure it makes sense to them

- Explanation: In the Course Library, you’ve got human

characters, animals, vehicles, foods, sports balls, other

random things, but you can always use “primitives” as

placeholders in a MVP, then go to the Unity Asset store to

get real graphics

- Tip: This is good opportunity to catch yourself if you’re

being too ambitious

- Don’t worry: This is just a best guess right now, if you want

to change your project completely next lab, you could

© Unity 2019 Lab 1 - Project Design Document

4

Step 4: Complete your Project Timeline

Now that we know the basic concept of our project, let’s figure out how we’re going to get it
done.

1. Fill in milestone

descriptions based

on your schedule for

the course, including

self-imposed due

dates

2. Add features that

will not be included

in your MVP to the

“Backlog”

- Warning: This is a MVP, so don’t be afraid to put objects on backlog

that you’ll get to in version 2

- Explanation: In Lab 2 you will be setting up your project, in Lab 3 you

will do basic player movement, in Lab 4 you will add basic gameplay,

and Lab 5 you will add graphics - that would be a good start in filling

this out

- Tip: This will depend heavily on the schedule you’re following for this

course - you should leave a significant amount of time to work on it

at the end when you’ve completed all 5 units

- Don’t worry: It will be hard to do this accurately, since you don’t

know how long things take - this can change

- Don’t worry: You don’t need to use all milestones - can add more or

leave blank rows you are not using

- Tip: These should be worded as “Completed functionality” - as in:

“Frog can move side-to-side based on left/right arrow keys”

© Unity 2019 Lab 1 - Project Design Document

5

Step 5: Complete your MVP sketch

To help visualize our minimum viable product, it’s always helpful to have a sketch.
1. Look at sketch in the example

2. Using Google Docs, some other online

simple drawing program, or pencil and

paper, draw a sketch of your MVP and

add it to your doc

- Warning: Do not spend forever on this - it’s just a

sketch - use circles, squares, and arrows

- Explanation: This should just be a sketch of your

MVP - what you hope to accomplish by the end

of the course - not the fully fledged product

Lesson Recap
New Progress ● Completed your project concept and production timeline

New Concepts

and Skills

● Personal Projects

● Design Documents

● Project Timelines,

● Project Milestones and Backlogs

● Minimum Viable Products

© Unity 2019 Lab 1 - Project Design Document

1

Quiz Unit 1

QUESTION CHOICES

1 Which Unity window contains a list of all the game
objects currently in your scene?

 a. Scene view
b. Project window
c. Hierarchy
d. Inspector

2 True or False:

Visual Studio is not a part of Unity. You could use a
different code editor to edit your C# scripts if you
wanted to.

 a. True
b. False

3 What best describes the difference between the below

images, where the car is in the second image is further
along the road?

 a. The second car’s X location
value is higher than the first
car’s

b. The second car’s Y location
value is higher than the first
car’s

c. The second car’s Z location
value is higher than the first
car’s

d. The second car’s Transform
value is higher than the first
car’s.

4 In what order do you put the words when you are
declaring a new variable?

 a. [data type] [access modifier]
[variable value] [variable name]

b. [access modifier] [data type]
[variable name] [variable value]

c. [data type] [access modifier]
[variable name] [variable value]

d. [variable name] [data type]

 public float speed = 20.0f;

© Unity 2019 Quiz - Unit 1

2
[access modifier] [variable
value]

5 Which of the following variables would be visible in the

Inspector?
 a. speed

b. turnSpeed
c. speed & turnSpeed
d. horizontalInput & forwardInput public float speed;

float turnSpeed = 45.0f;
private float horizontalInput;
private float forwardInput;

6 What is a possible value for the horizontalInput variable? a. -10

b. 0.52
c. “Right”
d. Vector3.Up

 horizontalInput = Input.GetAxis("Horizontal");

7 What is true about the following two lines of code? a. They will both move an object

at the same speed
b. They will both move an object

in the same direction
c. They will both move an object

along the same axis
d. They will both rotate an object,

but along different axes

 transform.Translate(Vector3.forward);

transform.Translate(1, 0, 0);

8 Which of the following lines of code is using standard

Unity naming conventions?`
 a. Line A

b. Line B
c. Line C
d. Line D /* a */ Public Float Speed = 40.0f;

/* b */ public float Speed = 40.0f;
/* c */ public float speed = 40.0f;
/* d */ public float speed = 40.0f;

9 Which comment would best describe the code below? a. // Rotates around the Y axis

based on left/right arrow keys
b. // Rotates around the Z axis

based on up/down arrow keys
c. // Rotates in an upward

direction based on left/right

 horizontalInput = Input.GetAxis("Horizontal");
transform.Rotate(Vector3.up, horizontalInput);

© Unity 2019 Quiz - Unit 1

3
arrow keys

d. // Moves object up/down
based on the the left/right
arrow keys

10 The image below shows the preferences window that

allows you to change which script editing tool (or IDE)
you want to use. Where would you click to choose an
alternative code editing tool?

 a. The red box
b. The blue box
c. The green box

© Unity 2019 Quiz - Unit 1

4

Quiz Answer Key

ANSWER EXPLANATION

1 C The Hierarchy window contains a list of every GameObject in the current
Scene. As objects are added and removed in the Scene, they will appear and
disappear from the Hierarchy as well.

2 B True. Visual Studio is just one of many editors you could use to edit your
code, including editors like Atom, Sublime, or even a basic Text Editor.

3 C You can tell which axis the car has moved along using the XYZ directional
gizmo in the top-right, which shows the blue axis pointing forwards down the
road.

4 B Variables are always declared in the order:
[access modifier] - public, private, etc
[data type] - float, int, GameObject, etc
[variable name] - speed, turnSpeed, player, offset, etc
[variable value] - 1.0f, 2, new Vector3(0, 1, 0), etc

5 A “public float speed” would be visible because it has the “public” modifier
applied to it

6 B Input.GetAxis returns a float value between -1 and 1, which means 0.52 is a
possible value

7 A Vector3.forward is the equivalent of (0, 0, 1), which has the same magnitude
as (1, 0, 0), even though they’re in different directions, so they would both
move an object at the same speed, but along different axes

8 D “public float speed = 40.0f;” uses the correct naming conventions because all
three of these terms should start with lowercase letters

9 A Vector3.up is the Y axis and it’s using the Horizontal input value, so it would
rotate around the Y axis when the user presses the left/right arrows

10 A You would click on the Red box to change the “External Script Editor” from
Visual Studio to another tool.

© Unity 2019 Quiz - Unit 1

1

2.1 Player Positioning

Steps:
Step 1: Create a new Project for Prototype 2

Step 2: Add the Player, Animals, and Food

Step 3: Get the user’s horizontal input

Step 4: Move the player left-to-right

Step 5: Keep the player inbounds

Step 6: Clean up your code and variables

Example of project by end of lesson

Length: 60 minutes

Overview: You will begin this unit by creating a new project for your second Prototype
and getting basic player movement working. You will first choose which
character you would like, which types of animals you would like to interact
with, and which food you would like to feed those animals. You will give the
player basic side-to-side movement just like you did in Prototype 1, but then
you will use if-then statements to keep the Player in bounds.

Project
Outcome:

The player will be able to move left and right on the screen based on the
user’s left and right key presses, but will not be able to leave the play area on
either side.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Adjust the scale of an object proportionally in order to get it to the size you

want
- More comfortably use the GetInput function in order to use user input to

control an object
- Create an if-then statement in order to implement basic logic in your

project, including the use of greater than (>) and less than (<) operators
- Use comments and automatic formatting in order to make their code more

clean and readable to other programmers

© Unity 2019 Lesson 2.1 - Player Positioning

2

Step 1: Create a new Project for Prototype 2
The first thing we need to do is create a new project and import the Prototype 2 starter files.
1. Open Unity Hub and create a New project named

“Prototype 2” in your course directory
2. Click on the link to access the Prototype 2 starter

files, then import them into Unity
3. Open the Prototype 2 scene and delete the

SampleScene without saving
4. In the top-right of the Unity Editor, change your

Layout from Default to your custom layout

- Don’t worry: Unit 2 has far more
assets than Unit 1, so the package
might take a while to import.

Step 2: Add the Player, Animals, and Food
Let’s get all of our objects positioned in the scene, including the player, animals, and food.

1. If you want, drag a different material from Course
Library > Materials onto the Ground object

2. Drag 1 Human, 3 Animals, and 1 Food object into
the Hierarchy

3. Rename the human “Player”, then reposition the
animals and food so you can see them

4. Adjust the XYZ scale of the food so you can easily
see it from above

- New Technique: Adjusting Scale
- Warning: Don’t choose people for

anything but the player, they don’t have
walking animations

- Tip: Remember, dragging objects into
the hierarchy puts them at the origin

© Unity 2019 Lesson 2.1 - Player Positioning

3

Step 3: Get the user’s horizontal input
If we want to move the Player left-to-right, we need a variable tracking the user’s input.

1. In your Assets folder, create a “Scripts” folder, and
a “PlayerController” script inside

2. Attach the script to the Player and open it
3. At the top of PlayerController.cs, declare a new

public float horizontalInput
4. In Update(), set horizontalInput =

Input.GetAxis(“Horizontal”), then test to make
sure it works in the inspector

- Warning: Make sure to create your
Scripts folder inside of the assets
folder

- Don’t worry: We’re going to get VERY
familiar with this process

- Warning: If you misspell the script
name, just delete it and try again.

public float horizontalInput;

void Update()
{
 horizontalInput = Input.GetAxis("Horizontal");
}

Step 4: Move the player left-to-right
We have to actually use the horizontal input to translate the Player left and right.

1. Declare a new public float speed = 10.0f;
2. In Update(), Translate the player side-to-side

based on horizontalInput and speed

- Tip: You can look at your old scripts
for code reference

public float horizontalInput;
public float speed = 10.0f;

void Update()
{

 horizontalInput = Input.GetAxis("Horizontal");
 transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);
}

© Unity 2019 Lesson 2.1 - Player Positioning

4

Step 5: Keep the player inbounds
We have to prevent the player from going off the side of the screen with an if-then statement.

1. In Update(), write an if-statement checking if the
player’s left X position is less than a certain value

2. In the if-statement, set the player’s position to its
current position, but with a fixed X location

- Tip: Move the player in scene view to
determine the x positions of the left
and right bounds

- New Concept: If-then statements
- New Concept: Greater than > and Less

Than < operators

void Update() {
 if (transform.position.x < -10) {
 transform.position = new Vector3(-10, transform.position.y, transform.position.z);
 }
}

Step 6: Clean up your code and variables
We need to make this work on the right side, too, then clean up our code.

1. Repeat this process for the right side of the
screen

2. Declare new xRange variable, then replace the
hardcoded values with them

3. Add comments to your code

- Warning: Whenever you see hardcoded
values in the body of your code, try to
replace it with a variable

- Warning: Watch your greater than /
less than signs!

public float xRange = 10;

void Update()
{

 // Keep the player in bounds
 if (transform.position.x < -10 -xRange)
 {

 transform.position = new Vector3(-10 -xRange, transform.position.y, transform.position.z);
 }

 if (transform.position.x > xRange)
 {
 transform.position = new Vector3(xRange, transform.position.y, transform.position.z);
 }
}

© Unity 2019 Lesson 2.1 - Player Positioning

5

Lesson Recap
New
Functionality

● The player can move left and right based on the user’s left and right key
presses

● The player will not be able to leave the play area on either side

New Concepts
and Skills

● Adjust object scale
● If-statements
● Greater/Less than operators

Next Lesson ● We’ll learn how to create and throw endless amounts of food to feed our
animals!

© Unity 2019 Lesson 2.1 - Player Positioning

1

2.2 Food Flight

Steps:

Step 1: Make the projectile fly forwards

Step 2: Make the projectile into a prefab

Step 3: Test for spacebar press

Step 4: Launch projectile on spacebar press

Step 5: Make animals into prefabs

Step 6: Destroy projectiles offscreen

Step 7: Destroy animals offscreen

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will allow the player to launch the projectile through the
scene. First you will write a new script to send the projectile forwards. Next
you will store the projectile along with all of its scripts and properties using
an important new concept in Unity called Prefabs. The player will be able to
launch the projectile prefab with a tap of the spacebar. Finally, you will add
boundaries to the scene, removing any objects that leave the screen.

Project

Outcome:

The player will be able to press the Spacebar and launch a projectile prefab
into the scene, which destroys itself when it leaves the game’s boundaries.
The animals will also be removed from the scene when they leave the game
boundaries.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Transform a game object into a prefab that can be used as a template
- Instantiate Prefabs to spawn them into the scene
- Override Prefabs to update and save their characteristics
- Get user input with GetKey and KeyCode to test for specific keyboard

presses
- Apply components to multiple objects at once to work as efficiently as

possible

© Unity 2019 Lesson 2.2 - Food Flight

2

Step 1: Make the projectile fly forwards

The first thing we must do is give the projectile some forward movement so it can zip across
the scene when it’s launched by the player.
1. Create a new “MoveForward” script, attach it to the

food object, then open it
2. Declare a new public float speed variable;
3. In Update(), add

transform.Translate(Vector3.forward *

Time.deltaTime * speed);, then save
4. In the Inspector, set the projectile’s speed variable,

then test

- Don’t worry: You should all be super
familiar with this method now… getting
easier, right?

public float speed = 40;

void Update() {
 transform.Translate(Vector3.forward * Time.deltaTime * speed);

}

Step 2: Make the projectile into a prefab

Now that our projectile has the behavior we want, we need to make it into a prefab it so it can
be reused anywhere and anytime, with all its behaviors included.
1. Create a new “Prefabs” folder, drag your food into

it, and choose Original Prefab

2. In PlayerController.cs, declare a new public

GameObject projectilePrefab; variable

3. Select the Player in the hierarchy, then drag the
object from your Prefabs folder onto the new
Projectile Prefab box in the inspector

4. Try dragging the projectile into the scene at
runtime to make sure they fly

- New Concept: Prefabs
- New Concept: Original vs Variant

Prefabs
- Tip: Notice that this your projectile

already has a move script if you drag it
in

© Unity 2019 Lesson 2.2 - Food Flight

3

Step 3: Test for spacebar press

Now that we have a projectile prefab assigned to PlayerController.cs, the player needs a way to
launch it with the space bar.
1. In PlayerController.cs, in Update(), add an

if-statement checking for a spacebar press:
if (Input.GetKeyDown(KeyCode.Space)) {

2. Inside the if-statement, add a comment saying
that you should // Launch a projectile from the

player

- Tip: Google a solution. Something like
“How to detect key press in Unity”

- New Functions: Input.GetKeyDown,
GetKeyUp, GetKey

- New Function: KeyCode

void Update()
{

 if (Input.GetKeyDown(KeyCode.Space))
 {
 // Launch a projectile from the player
 }
}

Step 4: Launch projectile on spacebar press

We’ve created the code that tests if the player presses spacebar, but now we actually need
spawn a projectile when that happens
1. Inside the if-statement, use the Instantiate

method to spawn a projectile at the player’s
location with the prefab’s rotation

- New Concept: Instantiation

if (Input.GetKeyDown(KeyCode.Space))
{

 // Launch a projectile from the player
 Instantiate(projectilePrefab, transform.position, projectilePrefab.transform.rotation);

}

© Unity 2019 Lesson 2.2 - Food Flight

4

Step 5: Make animals into prefabs

The projectile is now a prefab, but what about the animals? They need to be prefabs too, so
they can be instantiated during the game.
1. Rotate all animals on the Y axis by 180 degrees to

face down
2. Select all three animals in the hierarchy and Add

Component > Move Forward

3. Edit their speed values and test to see how it
looks

4. Drag all three animals into the Prefabs folder,
choosing “Original Prefab”

5. Test by dragging prefabs into scene view during
gameplay

- Tip: You can change all animals at
once by selecting all them in the
hierarchy while holding Cmd/Ctrl

- Tip: Adding a Component from
inspector is same as dragging it on

- Warning: Remember, anything you
change while the game is playing will
be reverted when you stop it

Step 6: Destroy projectiles offscreen

Whenever we spawn a projectile, it drifts past the play area into eternity. In order to improve
game performance, we need to destroy them when they go out of bounds.
1. Create “DestroyOutOfBounds” script and apply it

to the projectile
2. Add a new private float topBound variable and

initialize it = 30;
3. Write code to destroy if out of top bounds if

(transform.position.z > topBound) {

Destroy(gameObject); }

4. In the Inspector Overrides drop-down, click Apply

all to apply it to prefab

- Warning: Too many objects in the
hierarchy will slow the game

- Tip: Google “How to destroy
gameobject in Unity”

- New Function: Destroy
- New Technique: Override prefab

private float topBound = 30;

void Update() {

 if (transform.position.z > topBound) {
 Destroy(gameObject); }}

© Unity 2019 Lesson 2.2 - Food Flight

5

Step 7: Destroy animals offscreen

If we destroy projectiles that go out of bounds, we should probably do the same for animals.
We don’t want critters getting lost in the endless abyss of Unity Editor...
1. Create a new private float lowerBound variable

and initialize it = -10;
2. Create else-if statement to check if objects are

beneath lowerBound:
else if (transform.position.z > topBound)

3. Apply the script to all of the animals, then
Override the prefabs

- New Function: Else-if statement
- Warning: Don’t make topBound too

tight or you’ll destroy the animals
before they before they can spawn

private float topBound = 30;
private float lowerBound = -10;

void Update() {
 if (transform.position.z > topBound)
 {

 Destroy(gameObject);

 } else if (transform.position.z < lowerBound) {
 Destroy(gameObject);
 }
}

Lesson Recap
New

Functionality

● The player can press the Spacebar to launch a projectile prefab,
● Projectile and Animals are removed from the scene if they leave the screen

New Concepts

and Skills

● Create Prefabs
● Override Prefabs
● Test for Key presses
● Instantiate objects
● Destroy objects
● Else-if statements

Next Lesson ● Instead of dropping all these animal prefabs onto the scene, we’ll create a
herd of animals roaming the plain!

© Unity 2019 Lesson 2.2 - Food Flight

1

2.3 Random Animal Stampede

Steps:

Step 1: Create a spawn manager

Step 2: Spawn an animal if S is pressed

Step 3: Spawn random animals from array

Step 4: Randomize the spawn location

Step 5: Change the perspective of the camera

Example of project by end of lesson

Length: 50 minutes

Overview: Our animal prefabs walk across the screen and get destroyed out of bounds,

but they don’t actually appear in the game unless we drag them in! In this

lesson we will allow the animals to spawn on their own, in a random location

at the top of the screen. In order to do so, we will create a new object and a

new script to manage the entire spawning process.

Project

Outcome:

When the user presses the S key, a randomly selected animal will spawn at a

random position at the top of the screen, walking towards the player.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Create an empty object with a script attached

- Use arrays to create an accessible list of objects or values

- Use integer variables to determine an array index

- Randomly generate values with Random.Range in order to randomize

objects in arrays and spawn positions

- Change the camera’s perspective to better suit your game

© Unity 2019 Lesson 2.3 - Random Animal Stampede

2

Step 1: Create a spawn manager

If we are going to be doing all of this complex spawning of objects, we should have a dedicated

script to manage the process, as well as an object to attach it to.

1. In the hierarchy, create an empty object called

“SpawnManager”

2. Create a new script called “SpawnManager”, attach it to the

Spawn Manager, and open it

3. Declare new public GameObject[] animalPrefabs;

4. In the inspector, change the Array size to match your animal

count, then assign your animals by dragging them in

- Tip: Empty objects can be

used to store objects or used

to store scripts

- Warning: You can use

spaces when naming your

empty object, but make sure

your script name uses

PascalCase!

- New Concept: Arrays

Step 2: Spawn an animal if S is pressed

We’ve created an array and assigned our animals to it, but that doesn’t do much good until we

have a way to spawn them during the game. Let’s create a temporary solution for choosing and

spawning the animals.

1. In Update(), write an if-then statement to

instantiate a new animal prefab at the top of the

screen if S is pressed

2. Declare a new public int animalIndex and

incorporate it in the Instantiate call, then test

editing the value in the Inspector

- New Concept: Array Indexes

- Tip: Array indexes start at 0 instead of

1. An array of 3 animals would look like

[0, 1, 2]

- New Concept: Integer Variables

- Don’t worry: We’ll declare a new

variable for the Vector3 and index later

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
 if (Input.GetKeyDown(KeyCode.S)) {
 Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),
 animalPrefabs[animalIndex].transform.rotation);
 }
}

© Unity 2019 Lesson 2.3 - Random Animal Stampede

3

Step 3: Spawn random animals from array

We can spawn animals by pressing S, but doing so only spawns an animal at the array index we

specify. We need to randomize the selection so that S can spawn a random animal based on

the index, without our specification.

1. In the if-statement checking if S is pressed,

generate a random int animalIndex between 0 and

the length of the array

2. Remove the global animalIndex variable, since it is

only needed locally in the if-statement

- Tip: Google “how to generate a

random integer in Unity”

- New Function: Random.Range

- New Function: .Length

- New Concept: Global vs Local

variables

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
 if (Input.GetKeyDown(KeyCode.S)) {
 int animalIndex = Random.Range(0, animalPrefabs.Length);
 Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),
 animalPrefabs[animalIndex].transform.rotation); }}

Step 4: Randomize the spawn location

We can press S to spawn random animals from animalIndex, but they all pop up in the same

place! We need to randomize their spawn position, so they don’t march down the screen in a

straight line.

1. Replace the X value for the Vector3 with

Random.Range(-20, 20), then test

2. Within the if-statement, make a new local Vector3

spawnPos variable

3. At the top of the class, create private float

variables for spawnRangeX and spawnPosZ

- Tip: Random.Range for floats is

inclusive of all numbers in the range,

while Random.Range for integers is

exclusive!

- Tip: Keep using variables to clean your

code and make it more readable

private float spawnRangeX = 20;
private float spawnPosZ = 20;

void Update() {
 if (Input.GetKeyDown(KeyCode.S)) {
 // Randomly generate animal index and spawn position
 Vector3 spawnPos = new Vector3(Random.Range(-spawnRangeX, spawnRangeX),
 0, spawnPosZ);
 int animalIndex = Random.Range(0, animalPrefabs.Length);
 Instantiate(animalPrefabs[animalIndex], spawnPos,

 animalPrefabs[animalIndex].transform.rotation); }}

© Unity 2019 Lesson 2.3 - Random Animal Stampede

4

Step 5: Change the perspective of the camera

Our Spawn Manager is coming along nicely, so let’s take a break and mess with the

camera.Changing the camera’s perspective might offer a more appropriate view for this

top-down game.

1. Toggle between Perspective and Isometric view in

Scene view to appreciate the difference

2. Select the camera and change the Projection from

“Perspective” to “Orthographic”

- New: Orthographic vs Perspective

Camera Projection

- Tip: Test the game in both views to

appreciate the difference

Lesson Recap
New

Functionality

● The player can press the S to spawn an animal

● Animal selection and spawn location are randomized

● Camera projection (perspective/orthographic) selected

New Concepts

and Skills

● Spawn Manager

● Arrays

● Keycodes

● Random generation

● Local vs Global variables

● Perspective vs Isometric projections

Next Lesson ● Using collisions to feed our animals!

© Unity 2019 Lesson 2.3 - Random Animal Stampede

1

2.4 Collision Decisions

Steps:

Step 1: Make a new method to spawn animals

Step 2: Spawn the animals at timed intervals

Step 3: Add collider and trigger components

Step 4: Destroy objects on collision

Step 5: Trigger a “Game Over” message

Example of project by end of lesson

Length: 50 minutes

Overview: Our game is coming along nicely, but there are are some critical things we

must add before it’s finished. First off, instead of pressing S to spawn the

animals, we will spawn them on a timer so that they appear every few

seconds. Next we will add colliders to all of our prefabs and make it so

launching a projectile into an animal will destroy it. Finally, we will display a

“Game Over” message if any animals make it past the player.

Project

Outcome:

The animals will spawn on a timed interval and walk down the screen,

triggering a “Game Over” message if they make it past the player. If the

player hits them with a projectile to feed them, they will be destroyed.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Repeat functions on a timer with InvokeRepeating

- Write custom functions to make your code more readable

- Edit Box Colliders to fit your objects properly

- Detect collisions and destroy objects that collide with each other

- Display messages in the console with Debug Log

© Unity 2019 Lesson 2.4 - Collision Decisions

2

Step 1: Make a new method to spawn animals

Our Spawn Manager is looking good, but we’re still pressing S to make it work! If we want the

game to spawn animals automatically, we need to start by writing our very first custom

function.

1. In SpawnManager.cs, create a new void

SpawnRandomAnimal() {} function beneath

Update()

2. Cut and paste the code from the if-then statement

to the new function

3. Call SpawnRandomAnimal(); if S is pressed

- New Concept: Custom Void Functions

- New Concept: Compartmentalization /

Abstraction

void Update() {
 if (Input.GetKeyDown(KeyCode.S)) {
 SpawnRandomAnimal();
 Vector3 spawnpos … (Cut and Pasted Below) }}

void SpawnRandomAnimal() {
 Vector3 spawnpos = new Vector3(Random.Range(-xSpawnRange,
 xSpawnRange), 0, zSpawnPos);
 int animalIndex = Random.Range(0, animalPrefabs.Length);
 Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20) spawnpos,

 animalPrefabs[animalIndex].transform.rotation); }

Step 2: Spawn the animals at timed intervals

We’ve stored the spawn code in a custom function, but we’re still pressing S! We need to spawn

the animals on a timer, so they randomly appear every few seconds.

1. In Start(), use InvokeRepeating to spawn the

animals based on an interval, then test.

2. Remove the if-then statement that tests for S

being pressed

3. Declare new private startDelay and spawnInterval

variables then playtest and tweak variable values

- Tip: Google “Repeating function in

Unity”

- New Function: InvokeRepeating

private float startDelay = 2;
private float spawnInterval = 1.5f;

void Start() {
 InvokeRepeating("SpawnRandomAnimal", startDelay, spawnInterval); }

void Update() {
 if (Input.GetKeyDown(KeyCode.S)) {
 SpawnRandomAnimal(); } }

© Unity 2019 Lesson 2.4 - Collision Decisions

3

Step 3: Add collider and trigger components

Animals spawn perfectly and the player can fire projectiles at them, but nothing happens when

the two collide! If we want the projectiles and animals to be destroyed on collision, we need to

give them some familiar components - “colliders.”

1. Double-click on one of the animal prefabs, then

Add Component > Box Collider

2. Click Edit Collider, then drag the collider handles

to encompass the object

3. Check the “Is Trigger” checkbox

4. Repeat this process for each of the animals and

the projectile

5. Add a RigidBody component to the projectile and

uncheck “use gravity”

- New Component: Box Colliders

- Warning: Avoid Box Collider 2D

- Tip: Use isometric view and the

gizmos to cycle around and edit the

collider with a clear perspective

- Tip: For the Trigger to work, at least

one of the objects needs a rigidbody

component

Step 4: Destroy objects on collision

Now that the animals and the projectile have Box Colliders with triggers, we need to code a new

script in order to destroy them on impact.

1. Create a new DetectCollisions.cs script, add it to

each animal prefab, then open it

2. Before the final } add OnTriggerEnter function

using autocomplete

3. In OnTriggerEnter, put Destroy(gameObject);, then

test

4. In OnTriggerEnter, put Destroy(other.gameObject);

- New Concept: Overriding Functions

- New Function: OnTriggerEnter

- Tip: The “other” in OnTriggerEnter

refers to the collider of the other object

- Tip: Use VS’s Auto-Complete feature

for OnTriggerEnter and any/all override

functions

void OnTriggerEnter(Collider other) {
 Destroy(gameObject);
 Destroy(other.gameObject); }

© Unity 2019 Lesson 2.4 - Collision Decisions

4

Step 5: Trigger a “Game Over” message

The player can defend their field against animals for as long as they wish, but we should let

them know when they’ve lost with a “Game Over” message if any animals get past the player.

1. In DestroyOutOfBounds.cs, in the else-if condition

that checks if the animals reach the bottom of the

screen, add a Game Over messsage:

Debug.Log(“Game Over!”)

2. Clean up your code with comments

3. If using Visual Studio, Click Edit > Advanced >

Format document to fix any indentation issues

(On a Mac, click Edit > Format > Format Document)

- New Functions: Debug.Log,

LogWarning, LogError

- Tip: Tweak some values to adjust the

difficulty of your game. It might too

easy!

void Update() {
 if (transform.position.z > topBound)
 {

 Destroy(gameObject);

 } else if (transform.position.z < lowerBound)
 {

 Debug.Log("Game Over!");
 Destroy(gameObject);

 }

}

Lesson Recap
New

Functionality

● Animals spawn on a timed interval and walk down the screen

● When animals get past the player, it triggers a “Game Over” message

● If a projectile collides with an animal, both objects are removed

New Concepts

and Skills

● Create custom methods/functions

● InvokeRepeating() to repeat code

● Colliders and Triggers

● Override functions

● Log Debug messages to console

© Unity 2019 Lesson 2.4 - Collision Decisions

1

Challenge 2
Play Fetch

Challenge
Overview:

Use your array and random number generation skills to program this

challenge where balls are randomly falling from the sky and you have to send

your dog out to catch them before they hit the ground. To complete this

challenge, you will have to make sure your variables are assigned properly,

your if-statements are programmed correctly, your collisions are being

detected perfectly, and that objects are being generated randomly.

Challenge
Outcome:

- A random ball (of 3) is generated at a random x position above the screen

- When the user presses spacebar, a dog is spawned and runs to catch the

ball

- If the dog collides with the ball, the ball is destroyed

- If the ball hits the ground, a “Game Over” debug message is displayed

- The dogs and balls are removed from the scene when they leave the screen

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:

- Assigning variables and arrays in the inspector

- Editing colliders to the appropriate size

- Testing xyz positions with greater/less than operators in if-else statements

- Randomly generating values and selecting objects from arrays

Challenge
Instructions:

- Open your Prototype 2 project

- Download the "Challenge 2 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 2 > Instructions folder, use the

"Challenge 2 - Instructions" and “Outcome” video as a guide to complete the

challenge

2

Challenge Task Hint

 1 Dogs are spawning at

the top of the screen

Make the balls spawn from

the top of the screen

Click on the Spawn Manager object

and look at the “Ball Prefabs” array

 2 The player is spawning

green balls instead of

dogs

Make the player spawn dogs Click on the Player object and look at

the “Dog Prefab” variable

 3 The balls are

destroyed if anywhere

near the dog

The balls should only be

destroyed when coming into

direct contact with a dog

Check out the box collider on the dog

prefab

 4 Nothing is being

destroyed off screen

Balls should be destroyed

when they leave the bottom

of the screen and dogs

should be destroyed when

they leave the left side of the

screen

In the DestroyOutOfBounds script,

double-check the lowerLimit and

leftLimit variables, the greater than vs

less than signs, and which position

(x,y,z) is being tested

 5 Only one type of ball is

being spawned

Ball 1, 2, and 3 should be

spawned randomly

In the SpawnRandomBall() method,

you should declare a new random int
index variable, then incorporate that

variable into the Instantiate call

Bonus Challenge

Task

Hint

 X The spawn interval is

always the same

Make the spawn interval a

random value between 3

seconds and 5 seconds

Set the spawnInterval value to a new

random number between 3 and 5

seconds in the SpawnRandomBall

method

Y The player can “spam”

the spacebar key

Only allow the player to

spawn a new dog after a

certain amount of time has

passed

Search for Time.time in the Unity

Scripting API and look at the

example. And don’t worry if you can’t

figure it out - this is a very difficult
challenge.

© Unity 2019 Challenge 2 - Play Fetch

3

Challenge Solution

1 Select the Spawn Manager object and expand the “Ball Prefabs” array, then drag the Ball 1, 2,
3 prefabs from Assets > Challenge 2 > Prefabs onto Element 0, 1, 2

2 Select the Player object and drag the Dog prefab from Assets > Challenge 2 > Prefabs onto the

“Dog Prefab” variable

3 Double-click on the Dog prefab, then in the Box Collider component, click Edit Collider, and

reduce the collider to be the same size as the dog

4 In DestroyOutOfBoundsX.cs, make the leftLimit a negative value, change the greater than to a

less than when testing the x position, and test the y value instead of the z for the bottom limit

 private float leftLimit = -30;
private float bottomLimit = -5;

void Update() {
 if (transform.position.x > < leftLimit) {
 Destroy(gameObject);

 } else if (transform.position.z y < bottomLimit) {
 Destroy(gameObject);

 }

}

© Unity 2019 Challenge 2 - Play Fetch

4

5 In the SpawnRandomBall() method, declare a new random int index variable between 0 and

the length of the Array, then incorporate that index variable into the the Instantiate call

 void SpawnRandomBall ()
{

 // Generate random ball index and random spawn position
 int index = Random.Range(0, ballPrefabs.Length);
 Vector3 spawnPos = new Vector3(Random.Range(spawnXLeft, spawnXRight), spawnPosY, 0);

 // instantiate ball at random spawn location
 Instantiate(ballPrefabs[0 index], spawnPos, ballPrefabs[0 index].transform.rotation);
}

© Unity 2019 Challenge 2 - Play Fetch

5

Bonus Challenge Solution

X1 In SpawnManagerX, the “InvokeRepeating” method will not work to accomplish this, since it is

only capable of calling a single, unchanging method at a pre-set spawnInterval. Instead, we

could use the simpler “Invoke” method (which does not specify a spawnInterval), and then in

the in SpawnRandomBall() method, randomly reset startDelay using Random.Range() and

re-call the SpawnRandomBall() method again from within the method itself.

 private float spawnInterval = 4.0f;

void Start ()
{

 InvokeRepeating("SpawnRandomBall", startDelay, spawnInterval);
}

void SpawnRandomBall ()
{

 startDelay = Random.Range(3, 5);
 ...

 Invoke("SpawnRandomBall", startDelay);
}

Y1 In PlayerControllerX.cs, declare and initialize new fireRate and nextFire variables. Your

“fireRate” will represent the time the player has to wait in seconds, and the nextFire variable

will indicate the time (in seconds since the game started) at which the player will be able to

fire again (starting at 0.0)

 public GameObject dogPrefab;
private float fireRate = 1; // time the player has to wait to fire again
private float nextFire = 0; // time since start after which player can fire again

Y2 In the if-statement checking if the player pressed spacebar, add a new condition to check that

Time.time (the time in seconds since the game started) is greater than nextFire (which

represents the time after which the player is allowed to fire. If so, nextFire should be reset to

the current time plus the fireRate.

 // On spacebar press, if enough time has elapsed since last fire, send dog
if (Input.GetKeyDown(KeyCode.Space) && Time.time > nextFire)
{

 nextFire = Time.time + fireRate; // reset nextFire to current time + fireRate
 Instantiate(dogPrefab, transform.position, dogPrefab.transform.rotation);

}

© Unity 2019 Challenge 2 - Play Fetch

1

Unit 2 Lab
New Project with Primitives

Steps:
Step 1: Create a new Unity Project

Step 2: Create a background plane

Step 3: Create primitive Player and material

Step 4: Position camera based on project type

Step 5: Enemies, obstacles, and projectiles

Step 6: Export a Unity Package backup file

Example of progress by end of lab

Length: 60 minutes

Overview: You will create and set up the project that will soon transform into your very

own Personal Project. For now, you will use “primitive” shapes (such as

spheres, cubes, and planes) as placeholders for your objects so that you can

add functionality as efficiently as possible without getting bogged down by

graphics. To make it clear which object is which, you will also give each

object a unique colored material.

Project
Outcome:

All key objects are in the scene as primitive objects with the camera

positioned properly for your project type.

Learning
Objectives:

By the end of this lab, you will be able to:

- Create a simple plane as a background for your project

- Position the camera, background, and player appropriately depending on

the type of project you are creating

- Create primitive shapes to serve as placeholders for your gameobjects

- Create new colored materials and apply them to distinguish gameobjects

© Unity 2019 Lab 2 - New Project with Primitives

2

Step 1: Create a new Unity Project
Just like we did with the Prototype, the first thing we need to do is create a new blank project

1. Open Unity Hub and click New

2. Name the project “[Your Name] - Personal Project”,

select the correct version of Unity, make sure the

location is set to the new “Create with Code”
folder, and that you are using the 3D template

3. Click Create Project, wait for Unity to open, then

select your custom Layout
4. In the Project window, Assets > Scenes, rename

“SampleScene” to “My Game”

- Tip: If there are multiple people with

the same name using the computer,

might want to add last initial

- Don’t worry: There will just be a Main

camera and directional light in there

Step 2: Create a background plane
To orient yourself in the scene and not feel like you’re floating around in mid-air, it’s always

good to start by adding a background / ground object

1. In the Hierarchy, Right-click > 3D Object > Plane to add a

plane to your scene

2. In the Plane’s Inspector, in the top-right of the Transform

component, click on the Gear icon > Reset
3. Increase the XYZ scale of the plane to (5, 1, 5)

4. Adjust your position in Scene view so you have a good

view of the Plane

- Explanation: Working with

primitives - these are simple

objects that allow you to work

faster

© Unity 2019 Lab 2 - New Project with Primitives

3

Step 3: Create primitive Player and material
Now that we have the empty plane object set up, we can add the star of the show: the player

object

1. In the Hierarchy, Right-click > 3D Object > Sphere, then

rename it “Player”

2. In Assets, Right-click > Create > Folder named

“Materials”

3. Inside “Materials”, Right-click > Create > Material and

rename it “Blue”

4. In Blue’s Inspector, click on the Albedo color box and

change it to a blue

5. Drag the material from your Assets onto the Player

object

- Tip: Using primitives doesn’t let

graphics distract you and get in

the way of core features,
- Explanation: Albedo is a reference

to astronomical light reflection

properties - but it’s basically just

the material’s color

- Warning: Stick with blue right now

so it’s easy to follow - you’ll be

replacing it later

Step 4: Position camera based on project type
Now that we have the player in there, we need the best view of it, depending on our type of

project

1. For a top-down game, position the camera at (0, 10, 0)

directly over the player and rotate it 90 degrees on the X
axis

2. For a side-view game, rotate the Plane by -90 degrees on

the X axis
3. For a third-person view game, move the camera up on the

Y and Z axes and increase its rotation on the X axis

- Tip: Side view looks like top

view, but it’ll make a big diff

when you apply gravity

- Don’t worry: You might not

know exact view yet - just go

with what’s in your design

doc

Top-down view

Side-view

Isometric view

© Unity 2019 Lab 2 - New Project with Primitives

4

Step 5: Enemies, obstacles, and projectiles
Now that we know how to make primitives, let’s go ahead and make one for each object in our

project

1. In the Hierarchy, create new Cubes, Spheres, and

Capsules for all other main objects, renaming

them, repositioning them, and scaling them

2. In your Materials folder, create new materials for as

many colors as you have unique objects, editing

their color to match their name, then apply those

materials to your objects

3. Position all of your objects in locations relative to

each other that make sense

- Tip: If you plan on having variants of

certain objects (e.g. multiple animals),

create dark/light shades of the same

color
- Tip: Good to make enemies red - easy

if everyone uses the same

conventions

Step 6: Export a Unity Package backup file
Since we’re going to be putting our hearts and souls into this project, it’s always good to make

backups

1. Save your Scene

2. In the Project window, Right-click on the

“Assets” folder > Export Package, then click

Export

3. Create a new “Backups” folder in your Personal

Project folder, then save it with your name and

the version number (e.g.

Carl_V0.1.unitypackage”)

- Explanation: The “include dependencies”

checkbox will include any files that are

tied to / used by anything else we’re

exporting
- Tip: This is the same file type that you

imported at the start of Prototype 1

© Unity 2019 Lab 2 - New Project with Primitives

5

Lesson Recap
New Progress ● New project for your Personal Project

● Camera positioned and rotated based on project type

● All key objects in scene with unique materials

New Concepts
and Skills

● Primitives

● Create new materials

● Export Unity packages

© Unity 2019 Lab 2 - New Project with Primitives

1

Quiz Unit 2

QUESTION CHOICES

1 If it says, “Hello there!” in the console, what was the
code used to create that message?

 a. Debug(“Hello there!”);
b. Debug.Log("Hello there!");
c. Debug.Console(“Hello there!”);
d. Debug.Log(Hello there!);

2 If you want to destroy an object when its health reaches

0, what code would be best in the blank below?
 a. health > 0

b. health.0
c. health < 1
d. health < 0 private int health = 0;

void Update() {
 if (__________) {
 Destroy(gameObject);

 }

}

3 The code below creates an error that says, “error

CS1503: Argument 1: cannot convert from
'UnityEngine.GameObject[]' to 'UnityEngine.Object'”.
What could you do to remove the errors?

 a. On line 1, change
“GameObject[]” to
“GameObject”

b. On line 1, change
“enemyPrefabs” to
“enemyPrefabs[0]”

c. On line 3, change “Start()” to
“Update()”

d. On line 5, change
“enemyPrefabs” to
“enemyPrefabs[0]”

e. Either A or D
f. Both A and D together
g. Both B and C together

1. public GameObject[] enemyPrefabs;
2.

3. void Start()
4. {

5. Instantiate(enemyPrefabs);

6. }

© Unity 2019 Quiz - Unit 2

2

4 Which comment best describes the following code? a. // If player collides with
another object, destroy player

b. // If enemy collides with
another object, destroy the
object

c. // If player collides with a
trigger, destroy trigger

d. // If player collides with
another object, destroy the
object

 public class PlayerController : MonoBehaviour
{

 // Comment
 private void OnTriggerEnter(Collider other) {
 Destroy(other.gameObject);

 }

}

5 If you want to move the character up continuously as

the player presses the up arrow, what code would be
best in the two blanks below:

 a. GetKey(KeyCode.UpArrow)
b. GetKeyDown(UpArrow)
c. GetKeyUp(KeyCode.Up)
d. GetKeyHeld(Vector3.Up)

 if (Input.__________(__________))
{

 transform.Translate(Vector3.up);

}

6 Read the documentation from the Unity Scripting API
and the code below. Which of the following are possible
values for the randomFloat and randomInt variables?

 a. randomFloat = 100.0f;
randomInt = 0;

b. randomFloat = 100.0f;
randomInt = 100;

c. randomFloat = 50.5f;
randomInt = 100;

d. randomFloat = 0.0f;
randomInt = 50.5;

float randomFloat = Random.Range(0, 100);
int randomInt = Random.Range(0, 100);

© Unity 2019 Quiz - Unit 2

3

7 You are trying to randomly spawn objects from an array.

However, when your game is running, you see in the
console that there was an “error at
Assets/Scripts/SpawnManager.cs:5.
IndexOutOfRangeException: Index was outside the
bounds of the array.” Which line of code should you edit
in order to resolve this problem and still retain the
random object functionality?

 a. Line 2
b. Line 3
c. Line 4
d. Line 5

1. public GameObject[] randomObjects;
2.

3. void SpawnRandomObject() {
4. int objectIndex = Random.Range(0, 3);
5. Instantiate(randomObjects[objectIndex]);

6. }

8 If you have made changes to a prefab in the scene and

you want to apply those changes to all prefabs, what
should you click?

 a. The “Create” drop-down at the
top of the Hierarchy

b. The “Open” button at the top of
the Inspector

c. The “Overrides” drop-down at
the top of the Inspector

d. The “Add Component” button
at the bottom of the Inspector

9 Read the documentation from the Unity Scripting API

below. Which of the following is a correct use of the
InvokeRepeating method?

 a. InvokeRepeating(“Spawn, 0.5f,
1.0f”);

b. InvokeRepeating(“Spawn”, 0.5f,
1.0f);

c. InvokeRepeating(“Spawn",
gameObject, 1.0f);

d. InvokeRepeating(0.5f, 1.0f,
“Spawn”);

© Unity 2019 Quiz - Unit 2

4

10 You’re trying to create some logic that will tell the user

to speed up if they’re going too slow or to slow down if
they’re going too fast. How should you arrange the lines
of code below to accomplish that?

 a. 4, 6, 1, 2, 5, 9, 7, 8, 3
b. 6, 1, 2, 5, 7, 8, 3, 4, 9
c. 7, 8, 3, 4, 6, 5, 2, 1, 9
d. 7, 8, 3, 4, 6, 1, 2, 5, 9

1. Debug.Log(speedUp); }

2. else if (speed > 60) {
3. private string speedUp = "Speed up!";
4. void Update() {
5. Debug.Log(slowDown); }

6. if (speed < 10) {
7. private float speed;
8. private string slowDown = "Slow down!";
9. }

© Unity 2019 Quiz - Unit 2

5

Quiz Answer Key

ANSWER EXPLANATION

1 B Debug.Log() prints messages to the console and can accept String
parameters between quotation marks, such as “Hello there!”

2 C Since the “health” variable is an int, anything less than 1 would be “0”. The
sign for “less than” is “<”.

3 E “GameObject[]” is a GameObject array. You cannot instantiate an array, but
you can instantiate an object inside an array. So you could either remove the
array and have Instantiate use an individual object (option A) or you could
use an GameObject index of that Array (option D), but both would not work.

4 D Since it’s inside the PlayerController class, and it is destroying
other.gameObject, it is destroying something that the player collides with.

5 A “Input.GetKey” tests for the user holding down a key (as opposed to
KeyKeyDown, which test for a single press down of a Key).

6 A As it says in the documentation, Random.Range does not include the
maximum value for integers, but does include the maximum value for floats.
This means that randomInt cannot be 100, but randomFloat can be.

7 C Line 4, which generates the objectIndex, must be generating an index value
that is too high for the number of objects in the array. The best thing to do
would be to change it to “Random.Range(0, randomObjects.Length);

8 C The “Override” drop-down will allow you to apply any changes you’ve made to
your individual prefab to the original prefab object.

9 B According to the Scripting API, InvokeRepeating requires a string parameter,
then two floats.

10 D All variables should be declared first, then the void method, then the
if-condition telling them to speed up, then the else condition telling them to
slow down.

© Unity 2019 Quiz - Unit 2

1

3.1 Jump Force

Steps:
Step 1: Open prototype and change background

Step 2: Choose and set up a player character

Step 3: Make player jump at start

Step 4: Make player jump if spacebar pressed

Step 5: Tweak the jump force and gravity

Step 6: Prevent player from double-jumping

Step 7: Make an obstacle and move it left

Step 8: Create a spawn manager

Step 9: Spawn obstacles at intervals

Example of project by end of lesson

Length: 90 minutes

Overview: The goal of this lesson is to set up the basic gameplay for this prototype. We
will start by creating a new project and importing the starter files. Next we
will choose a beautiful background and a character for the player to control,
and allow that character to jump with a tap of the spacebar. We will also
choose an obstacle for the player, and create a spawn manager that throws
them in the player’s path at timed intervals.

Project
Outcome:

The character, background, and obstacle of your choice will be set up. The
player will be able to press spacebar and make the character jump, as
obstacles spawn at the edge of the screen and block the player’s path.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use GetComponent to manipulate the components of GameObjects
- Influence physics of game objects with ForceMode.Impulse
- Tweak the gravity of your project with Physics.gravity
- Utilize new operators and variables like &&
- Use Bool variables to control the number of times something can be done
- Constrain the RigidBody component to halt movement on certain axes

© Unity 2019 Lesson 3.1 - Jump Force

2

Step 1: Open prototype and change background
The first thing we need to do is set up a new project, import the starter files, and choose a

background for the game.

1. Open Unity Hub and create a new “Prototype 3”
project in your course directory

2. Click on the link to access the Prototype 3 starter
files, then download and import them into Unity

3. Open the Prototype 3 scene and delete the Sample
Scene without saving

4. Select the Background object in the hierarchy, then
in the Sprite Renderer component > Sprite, select
the _City, _Nature, or _Town image

- New Concept: Sprites / Sprite
Renderer

- Tip: Browse all of the Player and
Background options before choosing
either - some work better with others

Step 2: Choose and set up a player character
Now that we’ve started the project and chosen a background, we need to set up a character for

the player to control.
1. From Course Library > Characters, Drag a

character into the hierarchy, rename it “Player”,
then rotate it on the Y axis to face to the right

2. Add a Rigid Body component
3. Add a box collider, then edit the collider bounds
4. Create a new “Scripts” folder in Assets, create a

“PlayerController” script inside, and attach it to the
player

- Don’t worry: We will get the player and
the background moving soon

- Warning: Keep isTrigger UNCHECKED!
- Tip: Use isometric view and the

gizmos to cycle around and edit the
collider with a clear perspective

© Unity 2019 Lesson 3.1 - Jump Force

3

Step 3: Make player jump at start
Until now, we’ve only called methods on the entirety of a gameobject or the transform

component. If we want more control over the force and gravity of the player, we need to call

methods on the player’s Rigidbody component, specifically.
1. In PlayerController.cs, declare a new private

Rigidbody playerRb; variable
2. In Start(), initialize rigidRb =

GetComponent<Rigidbody>();

3. In Start(), use the AddForce method to make the
player jump at the start of the game

- New Function: GetComponent
- Tip: The playerRb variable could apply

to anything, which is why we need to
specify using GetComponent

private Rigidbody playerRb;

void Start()
{

 playerRb = GetComponent<Rigidbody>();
 playerRb.AddForce(Vector3.up * 1000);
}

Step 4: Make player jump if spacebar pressed
We don’t want the player jumping at start - they should only jump when we tell it to by pressing

spacebar.

1. In Update() add an if-then statement checking if
the spacebar is pressed

2. Cut and paste the AddForce code from Start() into
the if-statement

3. Add the ForceMode.Impulse parameter to the
AddForce call, then reduce force multiplier value

- Warning: Don’t worry about the slow
jump double jump, or lack of
animation, we will fix that later

- Tip: Look at Unity documentation for
method overloads here

- New Function: ForceMode.Impulse
and optional parameters

void Start()
{

 playerRb = GetComponent<Rigidbody>();
 playerRb.AddForce(Vector3.up * 100);
}

void Update() {
 if (Input.GetKeyDown(KeyCode.Space)) {
 playerRb.AddForce(Vector3.up * 100, ForceMode.Impulse); } }

© Unity 2019 Lesson 3.1 - Jump Force

4

Step 5: Tweak the jump force and gravity
We need give the player a perfect jump by tweaking the force of the jump, the gravity of the

scene, and the mass of the character.
1. Replace the hardcoded value with a new public float

jumpForce variable
2. Add a new public float gravityModifier variable and in

Start(), add Physics.gravity *= gravityModifier;
3. In the inspector, tweak the gravityModifer, jumpForce,

and Rigibody mass values to make it fun

- New Function: the students about
something

- Warning: Don’t make
gravityModifier too high - the player
could get stuck in the ground

- New Concept: Times-equals
operator *=

private Rigidbody playerRb;
public float jumpForce;
public float gravityModifier;

void Start() {
 playerRb = GetComponent<Rigidbody>();

 Physics.gravity *= gravityModifier; }

void Update() {
 if (Input.GetKeyDown(KeyCode.Space)) {
 playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse); } }

Step 6: Prevent player from double-jumping
The player can spam the spacebar and send the character hurtling into the sky. In order to stop

this, we need an if-statement that makes sure the player is grounded before they jump.
1. Add a new public bool isOnGround variable and

set it equal to true
2. In the if-statement making the player jump, set

isOnGround = false, then test
3. Add a condition && isOnGround to the

if-statement
4. Add a new void onCollisionEnter method, set

isOnGround = true in that method, then test

- New Concept: Booleans
- New Concept: “And” operator (&&)
- New Function: OnCollisionEnter
- Tip: When assigning values, use one =

equal sign. When comparing values,
use == two equal signs

public bool isOnGround = true

void Update() {
 if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {
 playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse);

 isOnGround = false; } }

private void OnCollisionEnter(Collision collision) {
 isOnGround = true; }

© Unity 2019 Lesson 3.1 - Jump Force

5

Step 7: Make an obstacle and move it left
We’ve got the player jumping in the air, but now they need something to jump over. We’re going

to use some familiar code to instantiate obstacles and throw them in the player’s path.
1. From Course Library > Obstacles, add an obstacle,

rename it “Obstacle”, and position it where it
should spawn

2. Apply a Rigid Body and Box Collider component,
then edit the collider bounds to fit the obstacle

3. Create a new “Prefabs” folder and drag it in to
create a new Original Prefab

4. Create a new “MoveLeft” script, apply it to the
obstacle, and open it

5. In MoveLeft.cs, write the code to Translate it to
the left according to the speed variable

6. Apply the MoveLeft script to the Background

- Warning: Be careful choosing your
obstacle in regards to the background.
Some obstacles may blend in, making
it difficult for the player to see what
they’re jumping over.

- Tip: Notice that when you drag it into
hierarchy, it gets placed at the spawn
location

private float speed = 30;

void Update() {
 transform.Translate(Vector3.left * Time.deltaTime * speed);
}

Step 8: Create a spawn manager
Similar to the last project, we need to create an empty object Spawn Manager that will

instantiate obstacle prefabs.
1. Create a new “Spawn Manager” empty object, then

apply a new SpawnManager.cs script to it
2. In SpawnManager.cs, declare a new public

GameObject obstaclePrefab;, then assign your
prefab to the new variable in the inspector

3. Declare a new private Vector3 spawnPos at your
spawn location

4. In Start(), Instantiate a new obstacle prefab, then
delete your prefab from the scene and test

- Don’t worry: We’re just instantiating on
Start for now, we will have them
repeating later

- Tip: You’ve done this before! Feel free
to reference code from the last project

public GameObject obstaclePrefab;
private Vector3 spawnPos = new Vector3(25, 0, 0);

void Start() {
 Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

© Unity 2019 Lesson 3.1 - Jump Force

6

Step 9: Spawn obstacles at intervals
Our spawn manager instantiates prefabs on start, but we must write a new function and utilize

InvokeRepeating if it to spawn obstacles on a timer. Lastly, we must modify the character’s

RigidBody so it can’t be knocked over.
1. Create a new void SpawnObstacle method, then

move the Instantiate call inside it
2. Create new float variables for startDelay and

repeatRate

3. Have your obstacles spawn on intervals using the
InvokeRepeating() method

4. In the Player Rigid Body component, expand
Constraints, then Freeze all but the Y position

- New Concept: RigidBody constraints

private float startDelay = 2;
private float repeatRate = 2;

void Start() {
 InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
 Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

void SpawnObstacle () {
 Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

Lesson Recap
New
Functionality

● Player jumps on spacebar press
● Player cannot double-jump
● Obstacles and Background move left
● Obstacles spawn on intervals

New Concepts
and Skills

● GetComponent
● ForceMode.Impulse
● Physics.Gravity
● Rigidbody constraints
● Rigidbody variables
● Booleans
● Multiply/Assign (“*) Operator
● And (&&) Operator
● OnCollisionEnter()

Next Lesson ● We’re going to fix that weird effect we created by moving the background
left by having it actually constantly scroll using code!

© Unity 2019 Lesson 3.1 - Jump Force

1

3.2 Make the World Whiz By

Steps:

Step 1: Create a script to repeat background

Step 2: Reset position of background

Step 3: Fix background repeat with collider

Step 4: Add a new game over trigger

Step 5: Stop MoveLeft on gameOver

Step 6: Stop obstacle spawning on gameOver

Step 7: Destroy obstacles that exit bounds

Example of project by end of lesson

Length: 70 minutes

Overview: We’ve got the core mechanics of this game figured out: The player can tap
the spacebar to jump over incoming obstacles. However, the player appears
to be running for the first few seconds, but then the background just
disappears! In order to fix this, we need to repeat the background seamlessly
to make it look like the world is rushing by! We also need the game to halt
when the player collides with an obstacle, stopping the background from
repeating and stopping the obstacles from spawning. Lastly, we must
destroy any obstacles that get past the player.

Project

Outcome:

The background moves flawlessly at the same time as the obstacles, and the
obstacles will despawn when they exit game boundaries. With the power of
script communication, the background and spawn manager will halt when
the player collides with an obstacle. Colliding with an obstacle will also
trigger a game over message in the console log, halting the background and
the spawn manager.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Use tags to label game objects and call them in the code
- Use script communication to access the methods and variables of other

scripts

© Unity 2019 Lesson 3.2 - Make the World Whiz By

2

Step 1: Create a script to repeat background

We need to repeat the background and move it left at the same speed as the obstacles, to

make it look like the world is rushing by. Thankfully we already have a move left script, but we

will need a new script to make it repeat.

1. Create a new script called RepeatBackground.cs
and attach it to the Background Object

- Tip: Think through what needs to be
done: when the background moves
half of its length, move it back that
distance

Step 2: Reset position of background

In order to repeat the background and provide the illusion of a world rushing by, we need to

reset the background object’s position so it fits together perfectly.

1. Declare a new variable private Vector3 startPos;

2. In Start(), set the startPos variable to its actual
starting position by assigning it =

transform.position;

3. In Update(), write an if-statement to reset position
if it moves a certain distance

- Don’t worry: We’re setting it at 40 for
now, just to test basic functionality.
You could probably get it right with trial
and error… but what would happen if
you changed the size?

private Vector3 startPos;

void Start() {
 startPos = transform.position; }

void Update() {
 if (transform.position.x < startPos.x - 50) {
 transform.position = startPos; } }

© Unity 2019 Lesson 3.2 - Make the World Whiz By

3

Step 3: Fix background repeat with collider

We’ve got the background repeating every few seconds, but the transition looks pretty

awkward. We need make the background loop perfectly and seamlessly with some new

variables.
1. Add a Box Collider component to the Background

2. Declare a new private float repeatWidth variable
3. In Start(), get the width of the box collider, divided by 2

4. Incorporate the repeatWidth variable into the repeat

function

- Don’t worry: We’re only adding a
box collider to get the size of the
background

- New Function: .size.x

private Vector3 startPos;
private float repeatWidth;

void Start() {
 startPos = transform.position;

 repeatWidth = GetComponent<BoxCollider>().size.x / 2 ; }

void Update() {
 if (transform.position.x < startPos.x - 50 repeatWidth) {
 transform.position = startPos; } }

Step 4: Add a new game over trigger

When the player collides with an obstacle, we want to trigger a “Game Over” state that stops

everything In order to do so, we need a way to label and discern all game objects that the

player collides with.

1. In the inspector, add a “Ground” tag to the Ground and an
“Obstacle” tag to the Obstacle prefab

2. In PlayerController, declare a new public bool gameOver;

3. In OnCollisionEnter, add the if-else statement to test if
player collided with the “Ground” or an “Obstacle”

4. If they collided with the “Ground”, set isOnGround = true,
and if they collide with an “Obstacle”, set gameOver = true

- New Concept: Tags
- Warning: New tags will NOT be

automatically added after you
create them. Make sure to add
them yourself once they are
created.

- Tip: No need to say gameOver
= false, since it is false by
default

public bool gameOver = false;

private void OnCollisionEnter(Collision collision) {
 isOnGround = true;
 if (collision.gameObject.CompareTag("Ground")) {
 isOnGround = true;
 } else if (collision.gameObject.CompareTag("Obstacle")) {
 gameOver = true;
 Debug.Log("Game Over!"); }

© Unity 2019 Lesson 3.2 - Make the World Whiz By

4
}

Step 5: Stop MoveLeft on gameOver

We’ve added a gameOver bool that seems to work, but the background and the objects

continue to move when they collide with an obstacle. We need the MoveLeft script to

communicate with the PlayerController, and stop once the player triggers gameOver.
1. In MoveLeft.cs, declare a new private

PlayerController playerControllerScript;

2. In Start(), initialize it by finding the Player and
getting the PlayerController component

3. Wrap the translate method in an if-statement
checking if game is not over

- New Concept: Script Communication
- Warning: Make sure to spell the

“Player” tag correctly

private float speed = 30;
private PlayerController playerControllerScript;

void Start() {
 playerControllerScript =

 GameObject.Find("Player").GetComponent<PlayerController>(); }

void Update() {
 if (playerControllerScript.gameOver == false) {
 transform.Translate(Vector3.left * Time.deltaTime * speed); } }

Step 6: Stop obstacle spawning on gameOver

The background and the obstacles stop moving when gameOver == true, but the Spawn

Manager is still raising an army of obstacles! We need to communicate with the Spawn

Manager script and tell it to stop when the game is over.
1. In SpawnManager.cs, get a reference to the

playerControllerScript using the same technique you did in
MoveLeft.cs

2. Add a condition to only instantiate objects if gameOver == false

private PlayerController playerControllerScript;

void Start() {
 InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
 playerControllerScript =

 GameObject.Find("Player").GetComponent<PlayerController>(); }

void SpawnObstacle () {
 if (playerControllerScript.gameOver == false) {
 Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation);

} }

© Unity 2019 Lesson 3.2 - Make the World Whiz By

5

Step 7: Destroy obstacles that exit bounds

Just like the animals in Unit 2, we need to destroy any obstacles that exit boundaries. Otherwise

they will slide into the distance… forever!
1. In MoveLeft, in Update(); write an if-statement to

Destroy Obstacles if their position is less than a
leftBound variable

2. Add any comments you need to make your code
more readable

- Tip: Reference your code from
MoveLeft

private float leftBound = -15;

void Update() {
 if (playerControllerScript.gameOver == false) {
 transform.Translate(Vector3.left * Time.deltaTime * speed); }

 if (transform.position.x < leftBound && gameObject.CompareTag("Obstacle")) {
 Destroy(gameObject); } }

Lesson Recap
New

Functionality

● Background repeats seamlessly
● Background stops when player collides with obstacle
● Obstacle spawning stops when player collides with obstacle
● Obstacles are destroyed off-screen

New Concepts

and Skills

● Repeat background
● Get Collider width

● Script communication

● Equal to (==) operator
● Tags
● CompareTag()

Next Lesson ● Our character, while happy on the inside, looks a little too rigid on the
outside, so we’re going to do some work with animations

© Unity 2019 Lesson 3.2 - Make the World Whiz By

1

3.3 Don’t Just Stand There

Steps:

Step 1: Explore the player’s animations

Step 2: Make the player start off at a run

Step 3: Set up a jump animation

Step 4: Adjust the jump animation

Step 5: Set up a falling animation

Step 6: Keep player from unconscious jumping

Example of project by end of lesson

Length: 60 minutes

Overview: The game is looking great so far, but the player character is a bit… lifeless.

Instead of the character simply sliding across the ground, we’re going to give

it animations for running, jumping, and even death! We will also tweak the

speed of these animations, timing them so they look perfect in the game

environment.

Project

Outcome:

With the animations from the animator controller, the character will have 3

new animations that occur in 3 different game states. These states include

running, jumping, and death, all of which transition smoothly and are timed to

suit the game.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Manage basic animation states in the Animator Controller

- Adjust the speed of animations to suit the character or the game

- Set a default animation and trigger others with anim.SetTrigger

- Set a permanent state for “Game Over” with anim.SetBool

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

2

Step 1: Explore the player’s animations

In order to get this character moving their arms and legs, we need to explore the Animation
Controller.
1. Double-click on the Player’s Animation Controller,

then explore the different Layers, double-clicking

on States to see their animations and Transitions

to see their conditions

- New Concept: Animator Controller

- New Concept: States and Conditions

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

3

Step 2: Make the player start off at a run

Now that we’re more comfortable with the animation controller, we can tweak some variables
and settings to make the player look like they’re really running.
1. In the Parameters tab, change the Speed_f

variable to 1.0

2. Right-click on Run_Static > Set as Layer Default
State

3. Single-click the the Run_Static state and adjust

the Speed value in the inspector to match the

speed of the background

- Tip: Notice how it transitions from idle

to walk to Run - looks awkward - that’s

why need to make run default

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

4

Step 3: Set up a jump animation

The running animation looks good, but very odd when the player leaps over obstacles. Next up,
we need to add a jumping animation that puts a real spring in their step.
1. In PlayerController.cs, declare a new private Animator

playerAnim;

2. In Start(), set playerAnim = GetComponent<Animator>();

3. In the if-statement for when the player jumps, trigger

the jump:

animator.SetTrigger(“Jump_trig”);

- New Function: anim.SetTrigger

- Tip: SetTrigger is helpful when

you just want something to

happen once then return to

previous state (like a jump

animation)

private Animator playerAnim;

void Start() {
 playerRb = GetComponent<Rigidbody>();

 playerAnim = GetComponent<Animator>();
 Physics.gravity *= gravityModifier; }

void Update() {
 if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {
 playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse);

 isOnGround = false;
 playerAnim.SetTrigger("Jump_trig"); } }

Step 4: Adjust the jump animation

The running animation plays, but it’s not perfect yet, we should tweak some of our character’s
physics-related variables to get this looking just right.

1. In the Animator window, click on the Running_Jump state,

then in the inspector and reduce its Speed value to slow

down the animation

2. Adjust the player’s mass, jump force, and gravity modifier

to get your jump just right

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

5

Step 5: Set up a falling animation

The running and jumping animations look great, but there’s one more state that the character
should have an animation for. Instead of continuing to sprint when it collides with an object, the
character should fall over as if it has been knocked out.

1. In the condition that player collides with Obstacle,

set the Death bool to true

2. In the same if-statement, set the DeathType

integer to 1

- New Function: anim.SetBool

- New Function: anim.SetInt

public bool gameOver = false;

private void OnCollisionEnter(Collision collision other) {
 if (other.gameObject.CompareTag("Ground")) {
 isOnGround = true;
 } else if (other.gameObject.CompareTag("Obstacle")) {
 Debug.Log("Game Over")
 gameOver = true;
 playerAnim.SetBool("Death_b", true);
 playerAnim.SetInteger("DeathType_int", 1); } }

Step 6: Keep player from unconscious jumping

Everything is working perfectly, but there’s one small disturbing bug to fix: the player can jump
from an unconscious position, making it look like the character is being defibrillated.

1. To prevent the player from jumping while

unconscious, add && !gameOver to the jump

condition

- New Concept: ! “Does not” and !=

“Does not equal” operators

- Tip: gameOver != true is the same as

gameOver == false

void Update() {
 if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {
 playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse);

 isOnGround = false;
 animator.SetTrigger("Jump_trig"); } }

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

6

Lesson Recap
New

Functionality

● The player starts the scene with a fast-paced running animation

● When the player jumps, there is a jumping animation

● When the player crashes, the player falls over

New Concepts

and Skills

● Animation Controllers

● Animation States, Layers, and Transitions

● Animation parameters

● Animation programming

● SetTrigger(), SetBool(), SetInt()

● Not (!) operator

Next Lesson ● We’ll really polish this game up to make it look nice using particles and

sound effects!

© Unity 2019 Lesson 3.3 - Don’t Just Stand There

1

3.4 Particles and Sound Effects

Steps:

Step 1: Customize an explosion particle

Step 2: Play the particle on collision

Step 3: Add a dirt splatter particle

Step 4: Add music to the camera object

Step 5: Declare variables for Audio Clips

Step 6: Play Audio Clips on jump and crash

Example of project by end of lesson

Length: 60 minutes

Overview: This game is looking extremely good, but it’s missing something critical:

Sound effects and Particle effects! Sounds and music will breathe life into an

otherwise silent game world, and particles will make the player’s actions

more dynamic and eye-popping. In this lesson, we will add cool sounds and

particles when the character is running, jumping, and crashing.

Project

Outcome:

Music will play as the player runs through the scene, kicking up dirt particles

in a spray behind their feet. A springy sound will play as they jump and a

boom will play as they crash, bursting in a cloud of smoke particles as they

fall over.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Attach particle effects as children to game objects

- Stop and play particle effects to correspond with character animation

states

- Work with Audio Sources and Listeners to play background music

- Add sound effects to add polish to your project

© Unity 2019 Lesson 3.4 - Particles and Sound Effects

2

Step 1: Customize an explosion particle

The first particle effect we should add is an explosion for when the player collides with an

obstacle.

1. From the Course Library > Particles, drag

FX_Explosion_Smoke into the hierarchy, then use

the Play / Restart / Stop buttons to preview it

2. Play around with the settings to get your particle

system the way you want it

3. Make sure to uncheck the Play on Awake setting

4. Drag the particle onto your player to make it a

child object, then position it relative to the player

- New Concept: Particle Effects

- Warning: Don’t go crazy customizing

your particle effects, you could easily

get sidetracked

- New Concept: Child objects with

relative positions

- Tip: Hovering over the settings while

editing your particle provides great

tool tips

Step 2: Play the particle on collision

We discovered the particle effects and found an explosion for the crash, but we need to assign

it to the Player Controller and write some new code in order to play it.

1. In PlayerController.cs, declare a new public ParticleSystem

explosionParticle;

2. In the Inspector, assign the explosion to the explosion particle variable

3. In the if-statement where the player collides with an obstacle, call

explosionParticle.Play();, then test and tweak the particle properties

- New Function:

particle.Play()

public ParticleSystem explosionParticle;

private void OnCollisionEnter(Collision collision other) {
 if (other.gameObject.CompareTag("Ground")) {
 isOnGround = true;
 } else if (other.gameObject.CompareTag("Obstacle")) {
 ... explosionParticle.Play(); } }

© Unity 2019 Lesson 3.4 - Particles and Sound Effects

3

Step 3: Add a dirt splatter particle

The next particle effect we need is a dirt splatter, to make it seem like the player is kicking up

ground as they sprint through the scene. The trick is that the particle should only play when the

player is on the ground.

1. Drag FX_DirtSplatter as the Player’s child object, reposition

it, rotate it, and edit its settings

2. Declare a new public ParticleSystem dirtParticle;, then

assign it in the Inspector

3. Add dirtParticle.Stop(); when the player jumps or collides

with an obstacle

4. Add dirtParticle.Play(); when the player lands on the ground

- New Function:

particle.Stop()

public ParticleSystem dirtParticle

void Update() {
 if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {
 ... dirtParticle.Stop(); } }

private void OnCollisionEnter(Collision collision other) {
 if (other.gameObject.CompareTag("Ground")) { ... dirtParticle.Play();
 } else if (other.gameObject.CompareTag("Obstacle")) { ... dirtParticle.Stop(); } }

Step 4: Add music to the camera object

Our particle effects are looking good, so it’s time to move on to sounds! In order to add music,

we need to attach sound component to the camera. After all, the camera is the eyes AND the

ears of the scene.

1. Select the Main Camera object, then Add

Component > Audio Source

2. From Course Library > Sound, drag a music clip

onto the AudioClip variable in the inspector

3. Reduce the volume so it will be easier to hear

sound effects

4. Check the Loop checkbox

- New Concept: Audio Listener and

Audio Sources

- Tip: Music shouldn’t appear to come

from a particular location in 3D space,

which is why we’re adding it directly to

the camera

© Unity 2019 Lesson 3.4 - Particles and Sound Effects

4

Step 5: Declare variables for Audio Clips

Now that we’ve got some nice music playing, it’s time to add some sound effects. This time

audio clips will emanate from the player, rather than the camera itself.

1. In PlayerController.cs, declare a new public

AudioClip jumpSound; and a new public AudioClip

crashSound;

2. From Course Library > Sound, drag a clip onto each

new sound variable in the inspector

- Tip: Adding sound effects is not as

simple as adding music, because we

need to trigger the events in our code

© Unity 2019 Lesson 3.4 - Particles and Sound Effects

5

Step 6: Play Audio Clips on jump and crash

We’ve assigned audio clips to the jump and the crash in PlayerController. Now we need to play

them at the right time, giving our game a full audio experience

1. Add an Audio Source component to the player

2. Declare a new private AudioSource playerAudio;

and initialize it as playerAudio =

GetComponent<AudioSource>();

3. Call playerAudio.PlayOneShot(jumpSound, 1.0f);

when the character jumps

4. Call playerAudio.PlayOneShot(crashSound, 1.0f);

when the character crashes

- Don’t worry: Declaring a new

AudioSource variable is just like

declaring a new Animator or RigidBody

private AudioSource playerAudio;

void Start() {
 ... playerAudio = GetComponent<AudioSource>(); }

void Update() {
 if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {
 ... playerAudio.PlayOneShot(jumpSound, 1.0f); } }

private void OnCollisionEnter(Collision collision other) {
 ...

 } else if (other.gameObject.CompareTag("Obstacle"))
 { ... playerAudio.PlayOneShot(crashSound, 1.0f); } }

Lesson Recap
New

Functionality

● Music plays during the game

● Particle effects at the player’s feet when they run

● Sound effects and explosion when the player hits an obstacle

New Concepts

and Skills

● Particle systems

● Child object positioning

● Audio clips and Audio sources

● Play and stop sound effects

© Unity 2019 Lesson 3.4 - Particles and Sound Effects

1

Challenge 3
Balloons & Booleans

Challenge
Overview:

Apply your knowledge of physics, scrolling backgrounds, and special effects

to a balloon floating through town, picking up tokens while avoiding

explosives. You will have to do a lot of troubleshooting in this project because

it is riddled with errors.

Challenge
Outcome:

- The balloon floats upwards as the player holds spacebar

- The background seamlessly repeats, simulating the balloon’s movement

- Bombs and Money tokens are spawned randomly on a timer

- When you collide with the Money, there’s a particle and sound effect

- When you collide with the Bomb, there’s an explosion and the background

stops

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:

- Declaring and initializing variables with the GetComponent method

- Using booleans to trigger game states

- Displaying particle effects at a particular location relative to a gameobject

- Seamlessly scrolling a repeating background

Challenge
Instructions:

- Open your Prototype 3 project

- Download the "Challenge 3 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 3 > Instructions folder, use the

"Challenge 3 - Instructions" and Outcome video as a guide to complete the

challenge

© Unity 2019 Challenge 3 - Balloons, Bombs & Booleans

2

Challenge Task Hint

 1 The player can’t

control the balloon

The balloon should float up

as the player presses

spacebar

There is a “NullReferenceExcepton”

error on the player’s rigidBody

variable - it has to be assigned in

Start() using the GetComponent<>

method

 2 The background only

moves when the game

is over

The background should move

at start, then stop when the

game is over

In MoveLeftX.cs, the objects should

only Translate to the left if the game

is NOT over

 3 No objects are being

spawned

Make bombs or money

objects spawn every few

seconds

There is an error message saying,

“Trying to Invoke method:

SpawnManagerX.PrawnsObject

couldn't be called” - spelling matters

 4 Fireworks appear to

the side of the balloon

Make the fireworks display at

the balloon’s position

The fireworks particle is a child

object of the Player - but its location

still has to be set at the same

location

 5 The background is not

repeating properly

Make the background repeat

seamlessly

The repeatWidth variable should be

half of the background’s width, not

half of its height

Bonus Challenge

Task

Hint

 X The balloon can float

way too high

Prevent the player from

floating their balloon too high

Add a boolean to check if the balloon

isLowEnough, then only allow the

player to add upwards force if that

boolean is true

 Y The balloon can drop

below the ground

Make the balloon appear to

bounce off of the ground,

preventing it from leaving the

bottom of the screen. There

should be a sound effect

when this happens, too!

Figure out a way to test if the balloon

collides with the ground object, then

add an impulse force upward if it

does

© Unity 2019 Challenge 3 - Balloons, Bombs & Booleans

3

Challenge Solution

1 In PlayerControllerX.cs, in Start(), assign playerRb just like the playerAudio variable:

 playerAudio = GetComponent<AudioSource>();

playerRb = GetComponent<Rigidbody>();

2 In MoveLeftX.cs, the objects should only Translate to the left if the game is NOT over - it’s

currently checking if the game IS over:

 if (! playerControllerScript.gameOver) {
 transform.Translate(Vector3.left * speed * Time.deltaTime, Space.World);

}

3 In SpawnManagerX.cs, in Start(), the InvokeRepeating method is using an incorrect spelling of

“SpawnObjects” - correct the spelling error

 void Start() {
 InvokeRepeating("PrawnsObjectSpawnObjects", spawnDelay, spawnInterval);
 ...

}

4 Select the Fireworks child object and reposition it to the same location as the Player

5 In RepeatBackgroundX.cs, in Start(), the repeatWidth should be dividing the X size (width) of

the box collider by 2, not the Y size (height)

 repeatWidth = GetComponent<BoxCollider>().size.y x / 2;

© Unity 2019 Challenge 3 - Balloons, Bombs & Booleans

4

Bonus Challenge Solution

X1 In PlayerControllerX.cs create a boolean to track whether the player is low enough to float

upwards, then in Update(), set it to false if the player is above a certain Y value and, else, set it

to true

 public bool isLowEnough;

void Update() {
 if (transform.position.y > 13) {
 isLowEnough = false;
 } else {
 isLowEnough = true;
 }

}

X2 In the if-statement testing for the player pressing spacebar, add a condition testing that the

isLowEnough boolean is true:

 if (Input.GetKey(KeyCode.Space) && isLowEnough && !gameOver) {
 playerRb.AddForce(Vector3.up * floatForce

}

Y1 Add a tag to the Ground object so that you can easily test for a collision with it

Y2 In PlayerControllerX.cs, in the OnCollisionEnter method, add a third else-if checking if the

balloon collided with the ground during the game, and if so, to add an impulse force upwards

 private void OnCollisionEnter(Collision other) {
...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)
{

 playerRb.AddForce(Vector3.up * 10, ForceMode.Impulse);

}

© Unity 2019 Challenge 3 - Balloons, Bombs & Booleans

5

Y3 To add a sound effect, declare a new AudioClip variable and assign it in the inspector, then use

the PlayOneShot method when the player collides with the ground.

 public AudioClip moneySound;
public AudioClip explodeSound;
public AudioClip bounceSound;

private void OnCollisionEnter(Collision other) {
...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)
{

 rigidBody.AddForce(Vector3.up * 10, ForceMode.Impulse);

 playerAudio.PlayOneShot(bounceSound, 1.5f);
}

© Unity 2019 Challenge 3 - Balloons, Bombs & Booleans

1

Unit 3 Lab
Player Control

Steps:

Step 1: Create PlayerController and plan your code

Step 2: Basic movement from user input

Step 3: Constrain the Player’s movement

Step 4: Code Cleanup and Export Backup

Example of progress by end of lab

Length: 60 minutes

Overview: In this lesson, you program the player’s basic movement, including the code
that limits that movement. Since there are a lot of different ways a player can
move, depending on the type of project you’re working on, you will not be
given step-by-step instructions on how to do it. In order to do this, you will
need to do research, reference other code, and problem-solve when things go
wrong.

Project

Outcome:

The player will be able to move around based on user input, but not be able to
move where they shouldn’t.

Learning

Objectives:

By the end of this lab, you will be able to:
- Program the type of player movement you want based on user input
- Restrict player movement in the manner that is appropriate, depending on

the needs of the project
- Troubleshoot issues and find workarounds related to player movement

© Unity 2019 Lab 3 - Player Control

2

Step 1: Create PlayerController and plan your code

Regardless of what type of movement your player has, it’ll definitely need a PlayerController
script
1. Select your Player and add a

Rigidbody component (with or without
gravity enabled)

2. In your Assets folder, create a new
“Scripts” folder

3. Inside the new “Scripts” folder, create
a new “PlayerController” C# script

4. Attach it to the player, then open it
5. Determine what type of programming

will be required for your Player

- Tip: Rigidbody is usually helpful - also detect
triggers

- Tip: Think about all the movement we’ve done so
far:
- Prototype 1 - forward/back and rotate based

on up/down and left/right arrows
- Challenge 1 - plane moving constantly, rotated

direction based on arrows
- Prototype 2 - side-to-side movement and

spacebar to fire a projectile
- Challenge 2 - No player movement, but

projectile launch on spacebar
- Prototype 3 - background move, and player

jumps on spacebar press
- Challenge 3 - background move and player

floats up when spacebar down
- Don’t worry: If you want your player to move like

the ball in Prototype 4, just use basic alternative for
now

References to the various types of movement programmed up to this point in the course

By the end of this step, you should have a new Script open and a solid plan for what will go in it.

© Unity 2019 Lab 3 - Player Control

3

Step 2: Basic movement from user input

The first thing we’ll program is the player’s very basic movement based on user input
1. Declare a new private float speed variable
2. If using physics, declare a new Rigidbody

playerRb variable for it and initialize it in Start()
3. If using arrow keys, declare new verticalInput

and/or horizontalInput variables
4. If basing your movement off a key press,

create the if-statement to test for the
KeyCode

5. Use either the Translate method or AddForce
method (if using physics) to move your
character

- Explanation: Rigidbody movement with
AddForce is different than Translate -
looks more similar to real world movement
with force being applied

- Don’t worry: If your player is colliding with
the ground or other objects in weird ways -
we’ll fix that soon

- Tip: You can look through your old code
for references to how you did things

By the end of this step, the player should be able to move the way that you want based on user
input.

© Unity 2019 Lab 3 - Player Control

4

Step 3: Constrain the Player’s movement

No matter what kind of movement your player has, it needs to be limited for gameplay
1. If your player is colliding with objects they shouldn’t

(including the ground), check the “Is trigger” box in the
Collider component

2. If your player’s position or rotation should be
constrained, expand the constraints in the Rigidbody
component and constrain certain axes

3. If your Player can go off the screen, write an
if-statement checking and resetting the position

4. If the Player can double-jump or fly off-screen, create a
boolean variable that limits the user’s ability to do so

5. If your player should be constrained by physical
barriers along the outside of the play area, create more
primitive Planes or Cubes and scale them to form
walls

- Tip: Check the Global/Local
checkbox above scene view to see
the rotation of the player

- Tip: Look back at Prototype 2 for
the if-then statement to keep the
player on screen

- Tip: Look back at Prototype 3 and
Challenge 3 for examples of
booleans to prevent
double-jumping or going too high

By the end of this step, the player’s movement should be constrained in such a way that makes your
game playable.

© Unity 2019 Lab 3 - Player Control

5

Step 4: Code Cleanup and Export Backup

Now that we have the basic functionality working, let’s clean up our code and make a backup.
1. Create new Empty game objects and nest objects

inside them to organize your hierarchy
2. Clean up your Update methods by moving the

blocks of code into new void functions (e.g.
“MovePlayer()” or “ConstrainPlayerPosition()”)

3. Add comments to make your code more readable
4. Test to make sure everything still works, then save

your scene
5. Right-click on your Assets folder > Export Package

then save a new version in your Backups folder

- Tip: You always want to keep your
Update() functions clean or they can
become overwhelming - it should be
easy to see what actions are
happening every frame

// Move the player left/right and up/down based on arrow keys

void MovePlayer() {
 ...

}

// Prevent the player from leaving the screen top/bottom

void ConstrainPlayerPosition() {
 ...

}

By the end of this step, your code should be commented, organized, and backed up.

Lesson Recap
New Progress ● Player can move based on user input

● Player movement is constrained to suit the requirements of the game

New Concepts

and Skills

● Program in C# independently
● Troubleshoot issues independently

© Unity 2019 Lab 3 - Player Control

1

Quiz Unit 3

QUESTION CHOICES

1 You are trying to STOP spawning enemies when the
player has died and have created the two scripts below
to do that. However, there is an error on the underlined
code, “isAlive” in the EnemySpawner script. What is
causing that error?

 a. The “p” should be capitalized in
“playerController.isAlive”

b. The “bool” in the
PlayerController class needs a
“public” access modifier

c. The if-statement cannot be in
the Update method

d. “isAlive” must start with a
capital “I” (“IsAlive”)

 public class PlayerController : MonoBehaviour {
 bool isAlive;
 ...

}

public class EnemySpawner : MonoBehaviour {
 void Start() {
 playerController = GameObject.Find("Player").GetComponent<PlayerController>();
 }

 void Update() {
 if (playerController.isAlive == false) {
 StopSpawning();

 }

 }

}

2 Match the following animation methods with its set of

parameters
 a. 1A, 2B, 3C

b. 1A, 2C, 3B
c. 1B, 2A, 3C
d. 1C, 2A, 3B 1. anim.SetBool(______); A. “Celebrate”

2. anim.SetTrigger(_____); B. “Alive”, true

3. anim.SetInt(_____); C. “ThrowType”, 2

© Unity 2019 Quiz - Unit 3

2

3 Given the animation controller / state machine below,

which code will make the character transition from the
“Idle” state to the “Walk” state?

 a. setFloat(“Speed_f”, 0.3f);
b. setInt(“Speed_f”, 1);
c. setTrigger(“Speed_f”);
d. setFloat(“Speed_f”, 0.1f);

4 Which of these is the correct way to get a reference to
an AudioSource component on a GameObject?

 a. Line A
b. Line B
c. Line C
d. Line D A. audio = GetComponent<AudioSource>();

B. audio = GetComponent(AudioSource)<>;

C. audio = AudioSource.GetComponent<>();

D. audio = GetComponent.Audio<Source>;

5 When you run a project with the code below, you get the

following error: “NullReferenceException: Object
reference not set to an instance of an object.” What is
most likely the problem?

 a. The Player object does not
have a collider

b. The Enemy object does not
have a Rigidbody component

c. The “Start” method should
actually be “Update”

d. There is no object named
“Player” in the scene

 public class Enemy : MonoBehaviour {
 void Start() {
 player = GameObject.Find("Player");
 }

 void OnTriggerEnter(Collider other) {
 if (player.transform.position.z > 10) {
 Destroy(other.gameObject);

 }

 }

}

© Unity 2019 Quiz - Unit 3

3

6 Which of the following conditions properly tests that the
game is NOT over and the player IS on the ground

 a. Line A
b. Line B
c. Line C
d. Line D A. if (gameOver == false AND isOnGround)

B. if (gameOver && isOnGround == true)
C. if (gameOver != true && isOnGround)
D. if (gameOver != false && isOnGround == true)

7 By default, what will be the first state used by this

Animation Controller?
 a. “Any State”

b. “NotCrouched”
c. “Death”
d. “Crouch_Up”

8 Which of the following variable declarations observes
Unity’s standard naming conventions (especially as it
relates to capitalization)?

 a. 2 and 4
b. 3 and 6
c. 4 and 5
d. 1 and 5

1. private Animator anim;
2. private player Player;
3. Float JumpForce = 10.0f;
4. bool gameOver = True;
5. private Vector3 startPos;
6. Public gameObject ObstaclePrefab;

© Unity 2019 Quiz - Unit 3

4

9 Which of the following is most likely the condition for

the transition between “Run” and “Walk” shown below?
 a. Jump_b is true

b. Speed_f is Less than 0.5
c. Speed_f is Greater than 0.5
d. Animation_int is Less than 10

A.

B.

C.

D.

10 Which of the following do you think makes the most

sense for a simple movement state machine?
 a. Image A

b. Image B
c. Image C

A.

B.

C.

© Unity 2019 Quiz - Unit 3

5

Quiz Answer Key

ANSWER EXPLANATION

1 B In order to access a variable from another class, that variable needs to be
“public”. By default, if there is no access modifier, variables are private and
cannot be accessed by another class

2 C SetInt would require an integer parameter, SetBool would require a boolean
parameter, and SetTrigger only requires the trigger name/id

3 A You can see in the inspector that the condition for this transition is that
“Speed_f is greater than 0.25”. You can tell it’s a float because it uses
decimal points and it must be higher than 0.25.

4 A “GetComponent<AudioSource>();” is the correct way to use the
GetComponent method

5 D If you try to “Find” an object that is not in the scene, you will get a
“NullReferenceException” error.

6 C != means “does not equal to”, so “gameOver != true” is testing that the game
is not over. If you just use the boolean’s name like “isOnGround,” this tests
whether that boolean is true. The syntax for testing two conditions is “&&”.

7 B The default starting state is the one that the “Entry” state connects to.

8 D 1. private Animator anim; - this is correct
2. private player Player; - should be “private Player player”
3. Float JumpForce = 10.0f; - should be “float jumpForce = 10.0f”
4. bool gameOver = True; - should be “true” (lowercase “t”)
5. private Vector3 startPos; - this is correct
6. Public gameObject ObstaclePrefab; - should be “public GameObject

obstaclePrefab”

9 B If you are transitioning from Running to Walking, that most likely is a result of
reducing speed, so checking if “Speed_f is less than 0.5” is most likely

10 A You should start with “Idle” as the default state, then be able to transition
between any of the states (Idling, Walking, Running). There should definitely
be a transition between Walk and Run.

© Unity 2019 Quiz - Unit 3

1

4.1 Watch Where You’re Going

Steps:
Step 1: Create project and open scene

Step 2: Set up the player and add a texture

Step 3: Create a focal point for the camera

Step 4: Rotate the focal point by user input

Step 5: Add forward force to the player

Step 6: Move in direction of focal point

Example of project by end of lesson

Length: 60 minutes

Overview: First thing’s first, we will create a new prototype and download the starter
files! You’ll notice a beautiful island, sky, and particle effect... all of which can
be customized! Next you will allow the player to rotate the camera around
the island in a perfect radius, providing a glorious view of the scene. The
player will be represented by a sphere, wrapped in a detailed texture of your
choice. Finally you will add force to the player, allowing them to move
forwards or backwards in the direction of the camera.

Project
Outcome:

The camera will evenly rotate around a focal point in the center of the island,
provided a horizontal input from the player. The player will control a textured
sphere, and move them forwards or backwards in the direction of the
camera’s focal point.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Apply Texture wraps to objects
- Attaching a camera to its focal point using parent-child relationships
- Transform objects based on local XYZ values

© Unity 2019 Lesson 4.1 - Watch Where You’re Going

2

Step 1: Create project and open scene
You’ve done it before, and it’s time to do it again... we must start a new project and import the

starter files.

1. Open Unity Hub and create “Prototype 4” in your
course directory

2. Click on the link to access the Prototype 4 starter
files, then download and import them into Unity

3. Open the Prototype 4 scene and delete the
Sample Scene without saving

4. Click Run to see the particle effects

- Don’t worry: You can change texture
of floating island and the color of the
sky later

- Don’t worry: We’re in
isometric/orthographic view for a
reason: It just looks nicer when we
rotate around the island

Step 2: Set up the player and add a texture
We’ve got an island for the game to take place on, and now we need a sphere for the player to

control and roll around.
1. In the Hierarchy, create 3D Object > Sphere
2. Rename it “Player”, reset its position and increase its XYZ scale

to 1.5
3. Add a RigidBody component to the Player
4. From the Library > Textures, drag a texture onto the sphere

- New Concept:
Texture wraps

© Unity 2019 Lesson 4.1 - Watch Where You’re Going

3

Step 3: Create a focal point for the camera
If we want the camera to rotate around the game in a smooth and cinematic fashion, we need

to pin it to the center of the island with a focal point.
1. Create a new Empty Object and rename it “Focal Point”,
2. Reset its position to the origin (0, 0, 0), and make the

Camera a child object of it
3. Create a new “Scripts” folder, and a new

“RotateCamera” script inside it
4. Attach the “RotateCamera” script to the Focal Point

- Don’t worry: This whole “focal
point” business may be
confusing at first, but it will make
sense once you see it in action

- Tip: Try rotating the Focal point
around the Y axis and see the
camera rotate around in scene
view

Step 4: Rotate the focal point by user input
Now that the camera is attached to the focal point, the player must be able to rotate it - and the

camera child object - around the island with horizontal input.

1. Create the code to rotate the camera based on
rotationSpeed and horizontalInput

2. Tweak the rotation speed value to get the speed
you want

- Tip: Horizontal input should be
familiar, we used it all the way back in
Unit 1! Feel free to reference your old
code for guidance.

public float rotationSpeed;

void Update()
{
 float horizontalInput = Input.GetAxis("Horizontal");
 transform.Rotate(Vector3.up, horizontalInput * rotationSpeed * Time.deltaTime);
}

© Unity 2019 Lesson 4.1 - Watch Where You’re Going

4

Step 5: Add forward force to the player
The camera is rotating perfectly around the island, but now we need to move the player.

1. Create a new “PlayerController” script, apply it to the
Player, and open it

2. Declare a new public float speed variable and initialize it
3. Declare a new private Rigidbody playerRb and initialize

it in Start()

4. In Update(), declare a new forwardInput variable based
on “Vertical” input

5. Call the AddForce() method to move the player forward
based forwardInput

- Tip: Moving objects with
RigidBody and Addforce should
be familiar, we did it back in Unit
3! Feel free to reference old code.

- Don’t worry: We don’t have
control over its direction yet -
we’ll get to that next

private Rigidbody playerRb;
public float speed;

void Start() {
 playerRb = GetComponent<Rigidbody>(); }

void Update() {
 float forwardInput = Input.GetAxis("Vertical");
 playerRb.AddForce(Vector3.forward * speed * forwardInput); }

Step 6: Move in direction of focal point
We’ve got the ball rolling, but it only goes forwards and backwards in a single direction! It

should instead move in the direction the camera (and focal point) are facing.
1. Declare a new private GameObject focalPoint; and

initialize it in Start(): focalPoint =

GameObject.Find("Focal Point");

2. In the AddForce call, Replace Vector3.forward with
focalPoint.transform.forward

- New Concept: Global vs Local XYZ
- Tip: Global XYZ directions relate to the

entire scene, whereas local XYZ
directions relate to the object in
question

private GameObject focalPoint;

void Start() {
 rb = GetComponent<Rigidbody>();
 focalPoint = GameObject.Find("Focal Point"); }

void Update() {
 float forwardInput = Input.GetAxis("Vertical");
 playerRb.AddForce(Vector3.forward focalPoint.transform.forward
 * speed * Time.deltaTime); }

© Unity 2019 Lesson 4.1 - Watch Where You’re Going

5

Lesson Recap
New
Functionality

● Camera rotates around the island based on horizontal input
● Player rolls in direction of camera based on vertical input

New Concepts
and Skills

● Texture Wraps
● Camera as child object
● Global vs Local coordinates
● Get direction of other object

Next Lesson ● In the next lesson, we’ll add more challenge to the player, by creating
enemies that chase them in the game.

© Unity 2019 Lesson 4.1 - Watch Where You’re Going

1

4.2 Follow the Player

Steps:

Step 1: Add an enemy and a physics material

Step 2: Create enemy script to follow player

Step 3: Create a lookDirection variable

Step 4: Create a Spawn Manager for the enemy

Step 5: Randomly generate spawn position

Step 6: Make a method return a spawn point

Example of project by end of lesson

Length: 60 minutes

Overview: The player can roll around to its heart’s content… but it has no purpose. In
this lesson, we fill that purpose by creating an enemy to challenge the player!
First we will give the enemy a texture of your choice, then give it the ability to
bounce the player away... potentially knocking them off the cliff. Lastly, we
will let the enemy chase the player around the island and spawn in random
positions.

Project

Outcome:

A textured and spherical enemy will spawn on the island at start, in a random
location determined by a custom function. It will chase the player around the
island, bouncing them off the edge if they get too close.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Apply Physics Materials to make game objects bouncy
- Normalize vectors to point the enemy in the direction of the player
- Randomly spawn with Random.Range on two axes
- Write more advanced custom functions and variables to make your code

clean and professional

© Unity 2019 Lesson 4.2 - Follow the Player

2

Step 1: Add an enemy and a physics material

Our camera rotation and player movement are working like a charm. Next we’re going to set up

an enemy and give them them some special new physics to bounce the player away!

1. Create a new Sphere, rename it “Enemy” reposition
it, and drag a texture onto it

2. Add a new RigidBody component and adjust its
XYZ scale, then test

3. In a new “Physics Materials” folder, Create >

Physics Material, then name it “Bouncy”
4. Increase the Bounciness to “1”, change Bounce

Combine to “Multiply”, apply it to your player and
enemy, then test

- Don’t worry: If your game is lagging,
uncheck the “Active” checkbox for
your clouds

- New Concept: Physics Materials
- New Concept: Bounciness property

and Bounce Combine

© Unity 2019 Lesson 4.2 - Follow the Player

3

Step 2: Create enemy script to follow player

The enemy has the power to bounce the player away, but only if the player approaches it. We

must tell the enemy to follow the player’s position, chasing them around the island.
1. Make a new “Enemy” script and attach it to the

Enemy

2. Declare 3 new variables for Rigidbody enemyRb;,
GameObject player;, and public float speed;

3. Initialize enemyRb = GetComponent Rigidbody>();
and player = GameObject.Find("Player");

4. In Update(), AddForce towards in the direction
between the Player and the Enemy

- Tip: Imagine we’re generating this new
vector by drawing an arrow from the
enemy to the player.

- Tip: We should start thinking ahead
and writing our variables in advance.
Think… what are you going to need?

- Tip: When normalized, a vector keeps
the same direction but its length is 1.0,
forcing the enemy to try and keep up

public float speed;
private Rigidbody enemyRb;
private GameObject player;

void Start() {
 enemyRb = GetComponent<Rigidbody>();
 player = GameObject.Find("Player"); }

void Update() {
 enemyRb.AddForce((player.transform.position
 - transform.position).normalized * speed); }

Step 3: Create a lookDirection variable

The enemy is now rolling towards the player, but our code is a bit messy. Let’s clean up by

adding a variable for the new vector.
1. In Update(), declare a new Vector3 lookDirection variable
2. Set Vector3 lookDirection = (player.transform.position -

transform.position).normalized;

3. Implement the lookDirection variable in the AddForce call

- Tip: As always, adding
variables makes the code more
readable

void Update() {
 Vector3 lookDirection = (player.transform.position
 - transform.position).normalized;

 enemyRb.AddForce(lookDirection (player.transform.position
 - transform.position).normalized * speed); }

© Unity 2019 Lesson 4.2 - Follow the Player

4

Step 4: Create a Spawn Manager for the enemy

Now that the enemy is acting exactly how we want, we’re going to turn it into a prefab so it can

be instantiated by a Spawn Manager.

1. Drag Enemy into the Prefabs folder to create a new Prefab,
then delete Enemy from scene

2. Create a new “Spawn Manager” object, attach a new
“SpawnManager” script, and open it

3. Declare a new public GameObject enemyPrefab variable then
assign the prefab in the inspector

4. In Start(), instantiate a new enemyPrefab at a predetermined
location

public GameObject enemyPrefab;

void Start()
{

 Instantiate(enemyPrefab, new Vector3(0, 0, 6),
enemyPrefab.transform.rotation); }

Step 5: Randomly generate spawn position

The enemy spawns at start, but it always appears in the same spot. Using the familiar Random

class, we can spawn the enemy in a random position.
1. In SpawnManager.cs, in Start(), create new randomly

generated X and Z

2. Create a new Vector3 randomPos variable with those
random X and Z positions

3. Incorporate the new randomPos variable into the
Instantiate call

4. Replace the hard-coded values with a spawnRange
variable

5. Start and Restart your project to make sure it’s working

- Tip: Remember, we used
Random.Range all the way back
in Unit 2! Feel free to reference
old code.

public GameObject enemyPrefab;
private float spawnRange = 9;

void Start() {
 float spawnPosX = Random.Range(-9, 9 -spawnRange, spawnRange);
 float spawnPosZ = Random.Range(-9, 9 -spawnRange, spawnRange);
 Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
 Instantiate(enemyPrefab, randomPos, enemyPrefab.transform.rotation); }

© Unity 2019 Lesson 4.2 - Follow the Player

5

Step 6: Make a method return a spawn point

The code we use to generate a random spawn position is perfect, and we’re going to be using it

a lot. If we want to clean the script and use this code later down the road, we should store it in a

custom function.
1. Create a new function Vector3

GenerateSpawnPosition() { }

2. Copy and Paste the spawnPosX and spawnPosZ

variables into the new method
3. Add the line to return randomPos; in your new

method

4. Replace the code in your Instantiate call with your
new function name: GenerateSpawnPosition()

- Tip: This function will come in handy
later, once we randomize a spawn
position for the powerup

- New Concept: Functions that return a
value

- Tip: This function is different from
“void” calls, which do not return a
value. Look at “GetAxis” in
PlayerController for example - it
returns a float

void Start() {
 Instantiate(enemyPrefab, GenerateSpawnPosition()
 new Vector3(spawnPosX, 0, spawnPosZ), enemyPrefab.transform.rotation);
 float spawnPosX = Random.Range(-spawnRange, spawnRange);
 float spawnPosZ = Random.Range(-spawnRange, spawnRange); }

private Vector3 GenerateSpawnPosition () {
 float spawnPosX = Random.Range(-spawnRange, spawnRange);
 float spawnPosZ = Random.Range(-spawnRange, spawnRange);
 Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
 return randomPos; }

Lesson Recap
New

Functionality

● Enemy spawns at random location on the island
● Enemy follows the player around
● Spheres bounce off of each other

New Concepts

and Skills

● Physics Materials
● Defining vectors in 3D space
● Normalizing values
● Methods with return values

Next Lesson ● In our next lesson, we’ll create ways to fight back against these enemies
using Powerups!

© Unity 2019 Lesson 4.2 - Follow the Player

1

4.3 PowerUp and CountDown

Steps:

Step 1: Choose and prepare a powerup

Step 2: Destroy powerup on collision

Step 3: Test for collision with a powerup

Step 4: Apply extra knockback with powerup

Step 5: Create Countdown Routine for powerup

Step 6: Add a powerup indicator

Example of project by end of lesson

Length: 60 minutes

Overview: The enemy chases the player around the island, but the player needs a better

way to defend themselves... especially if we add more enemies. In this

lesson, we’re going to create a powerup that gives the player a temporary

strength boost, shoving away enemies that come into contact! The powerup

will spawn in a random position on the island, and highlight the player with

an indicator when it is picked up. The powerup indicator and the powerup

itself will be represented by stylish game assets of your choice.

Project

Outcome:

A powerup will spawn in a random position on the map. Once the player

collides with this powerup, the powerup will disappear and the player will be

highlighted by an indicator. The powerup will last for a certain number of

seconds after pickup, granting the player super strength that blasts away

enemies.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Write informative debug messages with Concatenation and variables

- Repeat functions with the power of IEnumerator and Coroutines

- Use SetActive to make game objects appear and disappear from the scene

© Unity 2019 Lesson 4.3 - PowerUp and CountDown

2

Step 1: Choose and prepare a powerup

In order to add a completely new gameplay mechanic to this project, we will introduce a new
powerup object that will give the player temporary superpowers.
1. From the Library, drag a Powerup object into the scene,

rename it “Powerup” and edit its scale & position

2. Add a Box Collider to the powerup, click Edit Collider to

make sure it fits, then check the “Is Trigger” checkbox

3. Create a new “Powerup” tag and apply it to the powerup

4. Drag the Powerup into the Prefabs folder to create a new

“Original Prefab”

- Warning: Remember, you still

have to apply the tag after it

has been created.

Step 2: Destroy powerup on collision

As a first step to getting the powerup working, we’ll make it disappear when the player hits it
and set up a new boolean variable to track that the player got it.

1. In PlayerController.cs, add a new

OnTriggerEnter() method

2. Add an if-statement that destroys

other.CompareTag("Powerup") powerup on

collision

3. Create a new public bool hasPowerup; and set

hasPowerup = true; when you collide with the

Powerup

- Don’t worry: If this doesn’t work, make

sure that the Powerup’s collider “Is

trigger” and player’s collider is NOT

- Tip: Make sure hasPowerup = true in

the inspector when you collide

public bool hasPowerup

private void OnTriggerEnter(Collider other) {
 if (other.CompareTag("Powerup")) {
 hasPowerup = true;
 Destroy(other.gameObject); } }

© Unity 2019 Lesson 4.3 - PowerUp and CountDown

3

Step 3: Test for collision with a powerup

The powerup will only come into play in a very particular circumstance: when the player has a
powerup AND they collide with an enemy - so we’ll first test for that very specific condition.

1. Create a new “Enemy” tag and apply it to the

Enemy Prefab

2. In PlayerController.cs, add the OnCollisionEnter()
function

3. Create the if-statement with the double-condition

4. Create a Debug.Log to make sure it’s working

- Tip: OnTriggerEnter is good for stuff

like picking up powerups, but you

should use OnCollisionEnter when you

want something to do with physics

- New Concept: Concatenation in Debug

messages

- Tip: When you concatenate a variable

in a debug message, it will returns its

VALUE not its name

private void OnCollisionEnter(Collision collision) {
 if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {
 Debug.Log("Player collided with " + collision.gameObject
 + " with powerup set to " + hasPowerup); } }

Step 4: Apply extra knockback with powerup

With the condition for the powerup set up perfectly, we are now ready to program the actual
powerup ability: when the player collides with an enemy, the enemy should go flying!

1. In OnCollisionEnter() declare a new local variable

to get the Enemy’s Rigidbody component

2. Declare a new variable to get the direction away

from the player

3. Add an impulse force to the enemy, using a new

powerupStrength variable

- Tip: Reference the code in Enemy.cs

that makes the enemy follow the

player. In a way, we’re reversing that

code in order to push the enemy away.

- Don’t worry: No need to use

.Normalize, since they’re colliding

private float powerupStrength = 15.0f;

private void OnCollisionEnter(Collision collision) {
 if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

 Rigidbody enemyRigidbody = collision.gameObject.GetComponent<Rigidbody>();
 Vector3 awayFromPlayer = (collision.gameObject.transform.position
 - transform.position);

 Debug.Log("Player collided with " + collision.gameObject
 + " with powerup set to " + hasPowerup);
 enemyRigidbody.AddForce(awayFromPlayer * powerupStrength,
 ForceMode.Impulse); } }

© Unity 2019 Lesson 4.3 - PowerUp and CountDown

4

Step 5: Create Countdown Routine for powerup

It wouldn’t be fair to the enemies if the powerup lasted forever - so we’ll program a countdown
timer that starts when the player collects the powerup, removing the powerup ability when the
timer is finished.

1. Add a new IEnumerator

PowerupCountdownRoutine () {}

2. Inside the PowerupCountdownRoutine, wait 7

seconds, then disable the powerup

3. When player collides with powerup, start the

coroutine

- New Concept: IEnumerator

- New Concept: Coroutines

- Tip: WaitForSeconds()

private void OnTriggerEnter(Collider other) {
 if (other.CompareTag("Powerup")) {
 hasPowerup = true;
 Destroy(other.gameObject);

 StartCoroutine(PowerupCountdownRoutine()); } }

IEnumerator PowerupCountdownRoutine() {
 yield return new WaitForSeconds(7); hasPowerup = false; }

© Unity 2019 Lesson 4.3 - PowerUp and CountDown

5

Step 6: Add a powerup indicator

To make this game a lot more playable, it should be clear when the player does or does not
have the powerup, so we’ll program a visual indicator to display this to the user.

1. From the Library, drag a Powerup object into the scene, rename it

“Powerup Indicator”, and edit its scale

2. Uncheck the “Active” checkbox in the inspector

3. In PlayerController.cs, declare a new public GameObject

powerupIndicator variable, then assign the Powerup Indicator

variable in the inspector
4. When the player collides with the powerup, set the indicator object

to Active, then set to Inactive when the powerup expires

5. In Update(), set the Indicator position to the player’s position + an

offset value

- New Function:

SetActive

- Tip: Make sure the

indicator is turning on

and off before making

it follow the player

public GameObject powerupIndicator

void Update() {
 ... powerupIndicator.transform.position = transform.position
 + new Vector3(0, -0.5f, 0); }

private void OnTriggerEnter(Collider other) {
 if (other.CompareTag("Powerup")) {
 ... powerupIndicator.gameObject.SetActive(true); } }

IEnumerator PowerupCountdownRoutine() {
 ... powerupIndicator.gameObject.SetActive(false); }

Lesson Recap
New

Functionality

● When the player collects a powerup, a visual indicator appears

● When the player collides with an enemy while they have the powerup, the

enemy goes flying

● After a certain amount of time, the powerup ability and indicator disappear

New Concepts

and Skills

● Debug concatenation
● Local component variables
● IEnumerators and WaitForSeconds()
● Coroutines
● SetActive(true/false)

Next Lesson ● We’ll start generating waves of enemies for our player to fend off!

© Unity 2019 Lesson 4.3 - PowerUp and CountDown

1

4.4 For-Loops For Waves

Steps:

Step 1: Write a for-loop to spawn 3 enemies

Step 2: Give the for-loop a parameter

Step 3: Destroy enemies if they fall off

Step 4: Increase enemyCount with waves

Step 5: Spawn Powerups with new waves

Example of project by end of lesson

Length: 60 minutes

Overview: We have all the makings of a great game; A player that rolls around and

rotates the camera, a powerup that grants super strength, and an enemy that

chases the player until the bitter end. In this lesson we will wrap things up by

putting these pieces together!

First we will enhance the enemy spawn manager, allowing it to spawn

multiple enemies and increase their number every time a wave is defeated.

Lastly we will spawn the powerup with every wave, giving the player a chance

to fight back against the ever-increasing horde of enemies.

Project

Outcome:

The Spawn Manager will operate in waves, spawning multiple enemies and a

new powerup with each iteration. Every time the enemies drop to zero, a new

wave is spawned and the enemy count increases.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Repeat functions with For-loops

- Increment integer values in a loop with the ++ operator

- Target objects in a scene with FindObjectsOfType

- Return the length of an array as an integer with .Length

© Unity 2019 Lesson 4.4 - For-Loops For Waves

2

Step 1: Write a for-loop to spawn 3 enemies

We should challenge the player by spawning more than one enemy. In order to do so, we will

repeat enemy instantiation with a loop.

1. In SpawnManager.cs, in Start(), replace single

Instantiation with a for-loop that spawns 3

enemies

2. Move the for-loop to a new void

SpawnEnemyWave() function, then call that

function from Start()

- New Concept: For-loops

- Don’t worry: Loops are a bit confusing

at first, but they make sense

eventually. Loops are powerful tools

that programmers use often

- New Concept: ++ Increment Operator

void Start() {
 SpawnEnemyWave();
 for (int i = 0; i < 3; i++) {
 Instantiate(enemyPrefab, GenerateSpawnPosition(),
 enemyPrefab.transform.rotation); } }

void SpawnEnemyWave() {
 for (int i = 0; i < 3; i++) {
 Instantiate(enemyPrefab, GenerateSpawnPosition(),
 enemyPrefab.transform.rotation); } }

Step 2: Give the for-loop a parameter

Right now, SpawnEnemyWave spawns exactly 3 enemies, but if we’re going to dynamically

increase the number of enemies that spawn during gameplay, we need to be able to pass

information to that method.

1. Add a parameter int enemiesToSpawn to the

SpawnEnemyWave function

2. Replace i < __ with i < enemiesToSpawn

3. Add this new variable to the function call in Start():

SpawnEnemyWave(___);

- New Concept: Custom methods with

parameters

- Tip: GenerateSpawnPosition returns a

value, SpawnEnemyWave does not.

SpawnEnemyWave takes a parameter,

GenerateSpawnPosition does not.

void Start() {
 SpawnEnemyWave(3); }

void SpawnEnemyWave(int enemiesToSpawn) {
 for (int i = 0; i < 3 enemiesToSpawn; i++) {
 Instantiate(enemyPrefab, GenerateSpawnPosition(),

 enemyPrefab.transform.rotation); } }

© Unity 2019 Lesson 4.4 - For-Loops For Waves

3

Step 3: Destroy enemies if they fall off

Once the player gets rid of all the enemies, they’re left feeling a bit lonely. We need to destroy

enemies that fall, and spawn a new enemy wave once the last one is vanquished!

1. In Enemy.cs, destroy the enemies if their position

is less than a -Y value

2. In SpawnManager.cs, declare a new public int

enemyCount variable

3. In Update(), set enemyCount =

FindObjectsOfType<Enemy>().Length;

4. Write the if-statement that if enemyCount == 0

then SpawnEnemyWave, then delete it from Start()

- New Function: FindObjectsOfType

void Update() {
 ... if (transform.position.y < -10) { Destroy(gameObject); } }

<------>

public int enemyCount

void Update() {
 enemyCount = FindObjectsOfType<Enemy>().Length;
 if (enemyCount == 0) { SpawnEnemyWave(1); } }

Step 4: Increase enemyCount with waves

Now that we control the amount of enemies that spawn, we should increase their number in

waves. Every time the player defeats a wave of enemies, more should rise to take their place.

1. Declare a new public int waveNumber = 1;, then

implement it in SpawnEnemyWave(waveNumber);

2. In the if-statement that tests if there are 0 enemies

left, increment waveNumber by 1

- Tip: Incrementing with the ++ operator

is very handy, you may find yourself

using it in the future

public int waveNumber = 1;

void Start() {
 SpawnEnemyWave(3 waveNumber); }

void Update() {
 enemyCount = FindObjectsOfType<Enemy>().Length;

 if (enemyCount == 0) { waveNumber++; SpawnEnemyWave(1 waveNumber); } }

© Unity 2019 Lesson 4.4 - For-Loops For Waves

4

Step 5: Spawn Powerups with new waves

Our game is almost complete, but we’re missing something. Enemies continue to spawn with

every wave, but the powerup gets used once and disappears forever, leaving the player

vulnerable. We need to spawn the powerup in a random position with every wave, so the player

has a chance to fight back.

1. In SpawnManager.cs, declare a new public

GameObject powerupPrefab variable, assign the

prefab in the inspector and delete it from the

scene

2. In Start(), Instantiate a new Powerup

3. Before the SpawnEnemyWave() call, Instantiate a

new Powerup

- Tip: Now that we have a very playable

game, let’s test and tweak values

public GameObject powerupPrefab;

void Start() {
 ... Instantiate(powerupPrefab, GenerateSpawnPosition(),
 powerupPrefab.transform.rotation); }

void Update() {
 ... if (enemyCount == 0) { ... Instantiate(powerupPrefab,
 GenerateSpawnPosition(), powerupPrefab.transform.rotation); } }

Lesson Recap
New

Functionality

● Enemies spawn in waves

● The number of enemies spawned increases after every wave is defeated

● A new power up spawns with every wave

New Concepts

and Skills

● For-loops

● Increment (++) operator

● Custom methods with parameters

● FindObjectsOfType

© Unity 2019 Lesson 4.4 - For-Loops For Waves

1

Challenge 4
Soccer Scripting

Challenge
Overview:

Use the skills you learned in the Sumo Battle prototype in a completely
different context: the soccer field. Just like in the prototype, you will control a
ball by rotating the camera around it and applying a forward force, but instead
of knocking them off the edge, your goal is to knock them into the opposing
net while they try to get into your net. Just like in the Sumo Battle, after every
round a new wave will spawn with more enemy balls, putting your defense to
the test. However, almost nothing in this project is functioning! It’s your job to
get it working correctly.

Challenge
Outcome:

- Enemies move towards your net, but you can hit them to deflect them away
- Powerups apply a temporary strength boost, then disappear after 5 seconds
- When there are no more enemy balls, a new wave spawns with 1 more

enemy

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Defining Vectors by subtracting one location in 3D space from another
- Track the number of objects of a certain type in a scene to trigger certain

events
- Using Coroutines to perform actions based on a timed interval
- Using for-loops and dynamic variables to run code a particular number of

times
- Resolving errors related to null references of unassigned variables

Challenge
Instructions:

- Open your Prototype 4 project
- Download the "Challenge 4 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 4 > Instructions folder, use the

resources as a guide to complete this challenge

© Unity 2019 Challenge 4 - Soccer Scripting

2

Challenge Task Hint

 1 Hitting an enemy
sends it back towards
you

When you hit an enemy, it
should send it away from the
player

In PlayerControllerX.cs, to get a
Vector away from the player, you
should subtract the [enemy position]
minus the [player’s position] - not the
reverse

 2 A new wave spawns
when the player gets a
powerup

A new wave should spawn
when all enemy balls have
been removed

In SpawnManagerX.cs, check that the
enemyCount variable is being set
correctly

3 The powerup never
goes away

The powerup should only last
for a certain duration, then
disappear

In PlayerControllerX.cs, the
PowerupCoolDown Coroutine code
looks good, but this coroutine is
never actually called with the
StartCoroutine() method

 4 2 enemies are
spawned in every
wave

One enemy should be
spawned in wave 1, two in
wave 2, three in wave 3, etc

In SpawnManagerX.cs, the for-loop
that spawns enemy should make use
of the enemiesToSpawn parameter

 5 The enemy balls are
not moving anywhere

The enemy balls should go
towards the “Player Goal”
object

There is an error in EnemyX.cs:
“NullReferenceException: Object
reference not set to an instance of an
object”. It looks like the playerGoal
object is never assigned.

Bonus Challenge

Task

Hint

 X The player needs a
turbo boost

The player should get a
speed boost whenever the
player presses spacebar -
and a particle effect should
appear when they use it

In PlayerController, add a simple
if-statement that adds an “impulse”
force if spacebar is pressed. To add a
particle effect, first attach it as a child
object of the Focal Point.

Y The enemies never get
more difficult

The enemies’ speed should
increase in speed by a small
amount with every new wave

You’ll need to track and increase the
enemy speed in SpawnManagerX.cs.
Then in EnemyX.cs, reference that
speed variable and set it in Start().

© Unity 2019 Challenge 4 - Soccer Scripting

3

Challenge Solution

1 In PlayerControllerX.cs, in OnCollisionEnter(), the awayFromPlayer Vector3 is in the opposite
direction it should be.

 Vector3 awayFromPlayer = transform.position -
other.gameObject.transform.position;
 = other.gameObject.transform.position -
transform.position;

2 In SpawnManagerX.cs, the enemyCount variable is counting the number of objects with a
“Powerup” tag - it should be counting the number of objects with an “Enemy” tag

 void Update() {
 enemyCount = GameObject.FindGameObjectsWithTag("Powerup Enemy").Length;
 ...

}

3 In PlayerControllerX.cs, in the OnTriggerEnter() method, you need to initiate the
PowerupCooldown Coroutine in order to begin the countdown process

 private void OnTriggerEnter(Collider other) {
 if (other.gameObject.CompareTag("Powerup")) {
 ...

 StartCoroutine(PowerupCooldown());
 }

}

4 In SpawnManagerX.cs, the for-loop that spawns enemy should make use of the
enemiesToSpawn parameter

 for (int i = 0; i < 2 enemiesToSpawn; i++) {
 Instantiate(enemyPrefab, GenerateSpawnPosition(), ...

}

5 In EnemyX.cs, the playerGoal variable is not initialized - initialize it in the Start() method

 void Start() {
 enemyRb = GetComponent<Rigidbody>();

 playerGoal = GameObject.Find("Player Goal");
;}

© Unity 2019 Challenge 4 - Soccer Scripting

4

Bonus Challenge Solution

X1 To add a turbo boost, In PlayerControllerX.cs, declare a new turboBoost float variable, then in
Update(), add a simple if-statement that adds an “impulse” force in the direction of the focal
point if spacebar is pressed:

 private float turboBoost = 10;

void Update() {
 ...

 if (Input.GetKeyDown(KeyCode.Space)) {
 playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

 }

}

X2 Add the Smoke_Particle prefab as a child object of the focal point (next to the camera), then in
PlayerControllerX.cs, declare a new turboSmoke particle variable and assign it in the inspector

X3 In PlayerControllerX.cs, in the if-statement checking if the player presses spacebar, play the
particle

 if (Input.GetKeyDown(KeyCode.Space)) {
 playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);
 turboSmoke.Play();
}

Y1 In SpawnManagerX.cs, declare and initialize a new public enemySpeed variable, then increase
it by a certain amount every time a wave is spawned:

 public int enemyCount;
public float enemySpeed = 50;

void SpawnEnemyWave(int enemiesToSpawn) {
 ...

 waveCount++;

 enemyCount += 25;
}

© Unity 2019 Challenge 4 - Soccer Scripting

5

Y2 In EnemyX.cs, declare a new spawnManagerXScript variable, get a reference to it in Start(),
then set the enemy’s speed variable to your new enemySpeed variable

 private GameObject playerGoal;
private SpawnManagerX spawnManagerXScript;

void Start() {
 enemyRb = GetComponent<Rigidbody>();

 playerGoal = GameObject.Find("Player Goal");
 spawnManagerXScript = GameObject.Find("Spawn Manager").GetComponent<SpawnManagerX>();
 speed = spawnManagerXScript.enemySpeed;
}

Y3 To test, make the speed variable in EnemyX.cs public and check the enemies’ speed when they
are spawned in different waves

© Unity 2019 Challenge 4 - Soccer Scripting

1

Unit 4 Lab
Basic Gameplay

Steps:
Step 1: Give objects basic movement

Step 2: Destroy objects off-screen

Step 3: Handle object collisions

Step 4: Make objects into prefabs

Step 5: Make SpawnManager spawn Prefabs

Example of progress by end of lab

Length: 60 minutes

Overview: In this lab, you will work with all of your non-player objects in order to bring

your project to life with its basic gameplay. You will give your projectiles,

pickups, or enemies their basic movement and collision detection, make

them into prefabs, and have them spawned randomly by a spawn manager.

By the end of this lab, you should have a glimpse into the core functionality

of your game.

Project
Outcome:

Non-player objects are spawned at appropriate locations in the scene with

basic movement. When objects collide with each other, they react as

intended, by either bouncing or being destroyed.

Learning
Objectives:

By the end of this lab, you will be able to:

- More comfortably program basic movement

- More comfortably handle object collisions

- More comfortably spawn object prefabs on timed intervals

© Unity 2019 Lab 4 - Basic Gameplay

2

Step 1: Give objects basic movement
Before you spawn objects into your scene, they should move the way you want.

1. If relevant, add Rigidbody components to your

non-player objects

2. Create a new script(s) for the objects that will be

instantiated during gameplay and attach them to

their respective objects (including projectiles or

pickups)

3. Program the basic movement for your objects and

test that they work

- Tip: Make sure you uncheck “use

gravity” if you don’t want them to fall

- Tip: In the collider component, check

“is trigger” if you don’t want actual

collisions

By the end of this step, all objects should basically move the way they should in the game.

Step 2: Destroy objects off-screen
To make sure our hierarchy doesn’t get too cluttered, let’s make sure these objects get

destroyed when they leave the screen.

1. Either create a new script or add code to your

existing script to make sure objects are destroyed

when they leave the screen

- Tip: Move your objects in scene view

to determine the xyz positions objects

should be destroyed

By the end of this step, objects should be removed from the hierarchy when they are no longer in

play.

Step 3: Handle object collisions
Now that you have all these moving objects, they’re bound to start colliding with each other - we

need to program what should happen when everything collides.

1. If relevant, edit the Rigidbody mass of your objects

2. If relevant, to change the way your objects collide,

create a new Physics material for your objects

3. Add tags to your objects so you can accurately test

for which objects are colliding with which

4. Use OnCollisionEnter() (for Rigidbody collisions) or

OnTriggerEnter() (for trigger-based collisions) to

Destroy or Log messages to the console what

should happen when certain collisions occur

- Don’t worry: If you collide with a

powerup or pickup, the actual

functionality does not need to be

programmed, just the effect

- Tip: Should use OnTriggerEnter if

objects are being destroyed - but

remember that “Is Trigger” must be

checked for this to work!

By the end of this step, objects should destroy, bounce, or do nothing based on collisions.

© Unity 2019 Lab 4 - Basic Gameplay

3

Step 4: Make objects into prefabs
Now that the objects are basically behaving the way they should, if they’re going to be

instantiated during gameplay, they need to be prefabs

1. In the Assets directory, create a new Folder called

“Prefabs”

2. Drag in each object to create a new prefab for it

3. After all objects have been turned into prefabs, delete

them from the scene

4. Test the objects’ behavior by dragging them from the

Prefabs folder into the scene while the game is running

- Tip: When creating new prefabs,

you have to drag them one at a

time

- Tip: Notice that their icons turn

blue when they are prefabs

By the end of this step, all objects that will be spawned during gameplay should be prefabs and

should no longer be in your scene.

Step 5: Make SpawnManager spawn Prefabs
Now that we have all of our prefabs set up, we can create a spawn manager to spawn them at

intervals and, if we want, in random locations.

1. Create an Empty “Spawn Manager” object and attach a

new SpawnManager.cs script to it

2. Create individual GameObject or GameObject array
variables for your prefabs, then assign them in the

inspector

3. Use the Instantiate(), Random.Range(), and the

InvokeRepeating() methods to spawn objects at

intervals (random objects, random locations, or both)

4. Right-click on your Assets folder > Export Package then

save a new version in your Backups folder

- Tip: Name your variables

“____Prefab” so you know it

requires a prefab value

- Don’t worry: If it’s not perfect yet

of if there are some minor bugs -

just get the general idea working

By the end of this step, objects should be spawned automatically from the appropriate location.

© Unity 2019 Lab 4 - Basic Gameplay

4

Lesson Recap
New Progress ● Non-player objects prefabs have basic movement

● Objects are destroyed when they leave the screen

● Collisions between objects are handled appropriately

● Objects are spawned at the appropriate locations on time-based intervals

New Concepts
and Skills

● Creating basic gameplay for a project independently

© Unity 2019 Lab 4 - Basic Gameplay

1

Quiz Unit 4

QUESTION CHOICES

1 You’re trying to write some code that creates a random

age between 1 and 100 and prints that age, but there is

an error. What would fix the error?

 a. Change line 1 to “private float

age”

b. Add the word “int” to line 8, so

it says “int age = …”

c. On line 7, change the word

“private” to “void”

d. Add a new line after line 8 that

says “return age;”

1. private int age;
2.

3. void Start() {
4. Debug.Log(GenerateRandomAge());
5. }

6.

7. private int GenerateRandomAge() {
8. age = Random.Range(1, 101);

9. }

2 The following message was displayed in the console:

“Monica has 20 dollars”. Which of the line options in the

PrintNames function produced it?

 a. Option A

b. Option B

c. Option C

d. Option D

 string[] names = new string[] { "Steve", "Monica", "Eric" };
int money = 5;

void Start() {
 money *= 2;

 PrintNames();

}

void PrintNames () {
 A. Debug.Log("Monica has " + money/2 + " dollars");
 B. Debug.Log(names[1] + " has " + money*2 + " dollars");
 C. Debug.Log(names[2] + " has " + money*2 + " dollars");
 D. Debug.Log(names[Monica] + " has " + money/2 + " dollars");

}

© Unity 2019 Quiz - Unit 4

2

3 The code below produces “error CS0029: Cannot

implicitly convert type 'float' to 'UnityEngine.Vector3'”.

Which of the following would remove the error?

 a. On line 1, change “Vector3” to

“float”

b. On line 3, change “=” to “+”

c. Either A or B

d. None of the above
1. private Vector3 startingVelocity;
2. void Start() {
3. startingVelocity = 2.0f;

4. }

4 Which of the following follows Unity’s naming

conventions (especially as it relates to capitalization)?

 a. Line A

b. Line B

c. Line C

d. Line D
A. float forwardInput = Input.GetAxis("Vertical");
B. float ForwardInput = input.GetAxis("Vertical");
C. Float forwardInput = Input.getAxis("Vertical");
D. float forwardInput = input.getAxis("vertical");

5 You are trying to assign the powerup variable in the

inspector, but it is not showing up in the Player

Controller component. What is the problem?

 a. You cannot declare a powerup

variable in the Player Controller

Script

b. You cannot assign

GameObject type variables in

the inspector

c. The powerup variable should

be public instead of private

d. The PlayerController class

should be private instead of

public

 public class PlayerController : MonoBehaviour
{

 private GameObject powerup;
}

6 Your game has just started and you see the error,

“UnassignedReferenceException: The variable

playerIndicator of PlayerController has not been

assigned.” What is likely the solution to the problem?

 a. PlayerController variable in the

playerIndicator script needs to

be declared

b. The playerIndicator variable

needs to be made private

c. The PlayerController script

must be assigned to the player

object

d. An object needs to be dragged

onto the playerIndicator

variable in the inspector

 public class PlayerController : MonoBehaviour
{

 public GameObject playerIndicator;

 void Update() {
 playerIndicator.transform.position.y = 10;

 }

}

© Unity 2019 Quiz - Unit 4

3

7 You are trying to create a new method that takes a

number and multiplies it by two. Which method would

do that?

 a. Method A

b. Method B

c. Method C

d. Method D

A. private float DoubleNumber() {
 return number *= 2;
}

B. private float DoubleNumber(float number) {
 return number *= 2;
}

C. private void DoubleNumber(float number) {
 return number *= 2;
}

D. private void DoubleNumber() {
 return number *= 2;
}

8 Which comment best describes the code below? a. // If the player collides with an

enemy, destroy the enemy

b. // If the enemy collides with a

spike, destroy the spike

c. // If the enemy collides with a

spike, destroy the enemy

d. // If the player collides with a

spike, destroy the spike

 public class Enemy : MonoBehaviour
{

 // Comment
 private void OnTriggerEnter(Collider other) {
 if(other.CompareTag("Spike")) {
 Destroy(other.gameObject);

 }

 }

}

9 The code below produces the error, “error CS0029:

Cannot implicitly convert type 'UnityEngine.GameObject'

to 'UnityEngine.Rigidbody'”. What could be done to fix

this issue?

 a. On line 1, change “collision” to

“Rigidbody”

b. On line 2, change “gameObject”

to “Rigidbody”

c. On line 3, delete “.gameObject”

d. On line 3, add

“.GetComponent<Rigidbody>()”

before the semicolon

1. void OnCollisionEnter(Collision collision) {
2. if(collision.gameObject.CompareTag("Enemy")) {
3. Rigidbody enemyRb = collision.gameObject;

4. }

5. }

© Unity 2019 Quiz - Unit 4

4

10 Which of the following statements about

functions/methods are correct:

 a. A and B are correct

b. Only B is correct

c. B and C are correct

d. Only D is correct

e. None are correct

A. Functions/methods must be passed at least one parameter

B. Functions/methods with a “void” return type cannot be

passed parameters

C. A Function/method with an “int” return type could include

the code, “return 0.5f;”

D. If there was a function/method declared as “private void

RenameObject(string newName)”, you could call that

method with “RenameObject();”

© Unity 2019 Quiz - Unit 4

5

Quiz Answer Key

ANSWER EXPLANATION

1 D Since the method has an “int” return type “private int GenerateRandomAge()”,

it must return an int.

2 B Debug.Log(names[1] + " has " + money*2 + " dollars"); is correct.

Arrays start with index 0, so “Monica” has the index value of “1” (names[1]).

In start, money is multiplied by 2, making it 10, so “money*2” would give you

the value of 20.

3 A Changing “Vector3” to “float” would work because you would just be

multiplying a flat by another float. Changing “=” to “+” would not work

because you can’t add a float to a Vector3.

4 A Lowercase “float”, camelCase variables, Capitalized class & method names

5 C Making a variable public will make it appear in the inspector.

6 D If the consoles says a variable is not assigned, you most likely forgot to

assign that variable by dragging on object onto it in the inspector.

7 B Since it needs to “return” a value, it should have a return type of “private

float” as opposed to “private void.” Since it needs to take a number, it needs

a float parameter (“float number”).

8 B Since this is the “Enemy” class, we are testing for the enemy colliding with

something. Since it destroys “other.gameObject”, it will destroy the spike.

9 D The code cannot convert a RigidBody type variable to a GameObject type

variable, so you have to get the RigidBody component from the gameObject

10 E A. Functions/methods do not necessarily require parameters

B. Functions/methods with a “void” return type can be passed

parameters

C. A Function/method with an “int” return type could not include the

code, “return 0.5f;”, since 0.5f is a float

D. If there was a function/method declared as “private void

RenameObject(string newName)”, you would have to pass it a string

parameter, such as RenameObject(“Steve”);

© Unity 2019 Quiz - Unit 4

1

5.1 Clicky Mouse

Steps:
Step 1: Create project and switch to 2D view

Step 2: Create good and bad targets

Step 3: Toss objects randomly in the air

Step 4: Replace messy code with new methods

Step 5: Create object list in Game Manager

Step 6: Create a coroutine to spawn objects

Step 7: Destroy target with click and sensor

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final unit! We will start off by creating a new project and

importing the starter files, then switching the game’s view to 2D. Next we will

make a list of target objects for the player to click on: Three “good” objects

and one “bad”. The targets will launch spinning into the air after spawning at

a random position at the bottom of the map. Lastly, we will allow the player

to destroy them with a click!

Project
Outcome:

A list of three good target objects and one bad target object will spawn in a

random position at the bottom of the screen, thrusting themselves into the

air with random force and torque. These targets will be destroyed when the

player clicks on them or they fall out of bounds.

Learning
Objectives:

By the end of this lesson, you will be able to:

- Switch the game to 2D view for a different perspective

- Add torque to the force of an object

- Create a Game Manager object that controls game states as well as

spawning

- Create a List of objects and return their length with Count

- Use While Loops to repeat code while something is true

- Use OnMouseDown to enable the player to click on things

© Unity 2019 Lesson 5.1 - Clicky Mouse

2

Step 1: Create project and switch to 2D view
One last time… we need to create a new project and download the starter files to get things up

and running.

1. Open Unity Hub and create “Prototype 5” in your

course directory on correct version in 3D

2. Click on the link to access the Prototype 5 starter
files, then download and import them into Unity

3. Open the Prototype 5 scene, then delete the

sample scene without saving

4. Click on the 2D icon in Scene view to put Scene

view in 2D
5. (optional) Change the texture and color of the

background and the color of the borders

- New Concept: 2D View

- Demo: Notice in 2D view: You can’t

rotate around objects or move them in

the Z direction

© Unity 2019 Lesson 5.1 - Clicky Mouse

3

Step 2: Create good and bad targets
The first thing we need in our game are three good objects to collect, and one bad object to

avoid. It’ll be up to you to decide what’s good and what’s bad.

1. From the Library, drag 3 “good” objects and 1 “bad”

object into the Scene, rename them “Good 1”, “Good 2”,

“Good 3”, and “Bad 1”

2. Add Rigid Body and Box Collider components, then make

sure that Colliders surround objects properly

3. Create a new Scripts folder, a new “Target.cs” script

inside it, attach it to the Target objects
4. Drag all 4 targets into the Prefabs folder to create

“original prefabs”, then delete them from the scene

- Tip: The bigger the collider

boxes, the easier it will be to hit

them

- Tip: Try selecting multiple

objects and applying

scripts/components - very

handy

Step 3: Toss objects randomly in the air
Now that we have 4 target prefabs with the same script, we need to toss them into the air with

a random force, torque, and position.

1. In Target.cs, declare a new private Rigidbody

targetRb; and initialize it in Start()
2. In Start(), add an upward force multiplied by a

randomized speed

3. Add a torque with randomized xyz values

4. Set the position with a randomized X value

- New Function: AddTorque

- Tip: Test with different values by

dragging them in during runtime

- Don’t worry: We’re going to fix all these

hard-coded values next

private Rigidbody targetRb;

void Start() {
 targetRb = GetComponent<Rigidbody>();
 targetRb.AddForce(Vector3.up * Random.Range(12, 16), ForceMode.Impulse);
 targetRb.AddTorque(Random.Range(-10, 10), Random.Range(-10, 10),

 Random.Range(-10, 10), ForceMode.Impulse);
 transform.position = new Vector3(Random.Range(-4, 4), -6); }

© Unity 2019 Lesson 5.1 - Clicky Mouse

4

Step 4: Replace messy code with new methods
Instead of leaving the random force, torque, and position making our Start() function messy and

unreadable, we’re going to store each of them in brand new clearly named custom methods.

1. Declare and initialize new private float variables for minSpeed,

maxSpeed, maxTorque, xRange, and ySpawnPos;

2. Create a new function for Vector3 RandomForce() and call it in Start()
3. Create a new function for float RandomTorque(), and call it in Start()

4. Create a new function for RandomSpawnPos(), have it return a new

Vector3 and call it in Start()

private float minSpeed = 12; private float maxSpeed = 16;
private float maxTorque = 10; private float xRange = 4;
private float ySpawnPos = -6;

void Start() {
 ... targetRb.AddForce(... RandomForce(), ForceMode.Impulse);
 targetRb.AddTorque(... RandomTorque(), RandomTorque(),
 RandomTorque(), ForceMode.Impulse);
 transform.position = new Vector3(... RandomSpawnPos; }

Vector3 RandomForce() { return Vector3.up * Random.Range(minSpeed, maxSpeed);
}

float RandomTorque() { return Random.Range(-maxTorque, maxTorque); }
Vector3 RandomSpawnPos() { return new Vector3(Random.Range(-xRange, xRange),
ySpawnPos); }

© Unity 2019 Lesson 5.1 - Clicky Mouse

5

Step 5: Create object list in Game Manager
The next thing we should do is create a list for these objects to spawn from. Instead of making

a Spawn Manager for these spawn functions, we’re going to make a Game Manager that will

also control game states later on.

1. Create a new “Game Manager” Empty object,
attach a new GameManager.cs script, then open it

2. Declare a new public List<GameObject> targets;,

then in the Game Manager inspector, change the

list Size to 4 and assign your prefabs

- New Concept: Lists
- New Concept: Game Manager

- Demo: Feel free to reference old code:

We used an array instead of a list to

spawn the animals in Unit 2

Step 6: Create a coroutine to spawn objects
Now that we have a list of object prefabs, we should instantiate them in the game using

coroutines and a new type of loop.

1. Declare and initialize a new private float spawnRate

variable

2. Create a new IEnumerator SpawnTarget () method

3. Inside the new method, while(true), wait 1 second,
generate a random index, and spawn a random target

4. In Start(), use the StartCoroutine method to begin

spawning objects

- Tip: Feel free to reference old code:

we used coroutines for the

powerup cooldown in Unit 4
- Tip: Arrays return an integer with

.Length, while Lists return an

integer with .Count

- New Concept: While Loops

private float spawnRate = 1.0f;

void Start() { StartCoroutine(SpawnTarget()); }

IEnumerator SpawnTarget() {
 while (true) {
 yield return new WaitForSeconds(spawnRate);
 int index = Random.Range(0, targets.Count);
 Instantiate(targets[index]); } }

© Unity 2019 Lesson 5.1 - Clicky Mouse

6

Step 7: Destroy target with click and sensor
Now that our targets are spawning and getting tossed into the air, we need a way for the player

to destroy them with a click. We also need to destroy any targets that fall below the screen.

1. In Target.cs, add a new method for private void

OnMouseDown() { } , and inside that method,

destroy the gameObject

2. Add a new method for private void

OnTriggerEnter(Collider other) and inside that

function, destroy the gameObject

- New Function: OnMouseDown
- Tip: There is also OnMouseUp, and

OnMouseEnter, but Down is definitely

the one we want

- Tip: You could use Update and check if

target y position is lower than a certain

value, but a sensor is better because it

doesn't run all the time

private void OnMouseDown() {
 Destroy(gameObject); }

private void OnTriggerEnter(Collider other) {
 Destroy(gameObject); }

Lesson Recap
New
Functionality

● Random objects are tossed into the air on intervals

● Objects are given random speed, position, and torque

● If you click on an object, it is destroyed

New Concepts
and Skills

● 2D View

● AddTorque

● Game Manager

● Lists

● While Loops

● Mouse Events

Next Lesson ● We’ll add some effects and keep track of score!

© Unity 2019 Lesson 5.1 - Clicky Mouse

1

5.2 Keeping Score

Steps:

Step 1: Add Score text position it on screen

Step 2: Edit the Score Text’s properties

Step 3: Initialize score text and variable

Step 4: Create a new UpdateScore method

Step 5: Add score when targets are destroyed

Step 6: Assign a point value to each target

Step 7: Add a Particle explosion

Example of project by end of lesson

Length: 60 minutes

Overview: Objects fly into the scene and the player can click to destroy them, but
nothing happens. In this lesson, we will display a score in the user interface
that tracks and displays the player’s points. We will give each target object a
different point value, adding or subtracting points on click. Lastly, we will add
cool explosions when each target is destroyed.

Project

Outcome:

A “Score: “ section will display in the UI, starting at zero. When the player
clicks a target, the score will update and particles will explode as the target
is destroyed. Each “Good” target adds a different point value to the score,
while the “Bad” target subtracts from the score.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Create UI Elements in the Canvas
- Lock elements and objects into place with Anchors
- Use variables and script communication to update elements in the UI

© Unity 2019 Lesson 5.2 - Keeping Score

2

Step 1: Add Score text position it on screen

In order to display the score on-screen, we need to add our very first UI element.
1. Create > UI > TextMeshPro text, then if prompted

click the button to Import TMP Essentials
2. Rename the new object “Score Text”, then zoom

out to see the canvas in Scene view
3. Change the Anchor Point so that it is anchored

from the top-left corner

4. In the inspector, change its Pos X and Pos Y so
that it is in the top-left corner

- New Concept: Text Mesh Pro / TMPro
- New Concept: Canvas
- New Concept: Anchor Points
- Tip: Look at how it displays in scene

vs game view. It may be hard to see
white text depending on the
background

Step 2: Edit the Score Text’s properties

Now that the basic text is in the scene and positioned properly, we should edit its properties so
that it looks nice and has the correct text.

1. Change its text to “Score:”
2. Choose a Font Asset, Style, Size, and Vertex color

to look good with your background

© Unity 2019 Lesson 5.2 - Keeping Score

3

Step 3: Initialize score text and variable

We have a great place to display score in the UI, but nothing is displaying there! We need the UI
to display a score variable, so the player can keep track of their points.

1. At the top of GameManager.cs, add “using TMPro;”

2. Declare a new public TextMeshProUGUI scoreText, then assign that
variable in the inspector

3. Create a new private int score variable and initialize it in Start() as
score = 0;

4. Also in Start(), set scoreText.text = "Score: " + score;

- New Concept:
Importing Libraries

private int score;
public TextMeshProUGUI scoreText;

void Start() {
 StartCoroutine(SpawnTarget());

 score = 0;
 scoreText.text = "Score: " + score; }

Step 4: Create a new UpdateScore method

The score text displays the score variable perfectly, but it never gets updated. We need to write
a new function that racks up points to display in the UI.

1. Create a new private void UpdateScore() method
2. Cut and paste scoreText.text = "Score: " + score; into the new

method, then call UpdateScore() in Start()

3. Add the parameter int scoreToAdd to the UpdateScore
method, then fix the error in Start() by passing it a value of
zero

4. In UpdateScore(), increase the score by setting score +=

scoreToAdd;
5. Call UpdateScore(5) in the spawnTarget() function

- Don’t worry: It doesn’t
make sense to add to
score when spawned, this
is just temporary

void Start() {
 ... score = 0;
 scoreText.text = "Score: " + score; UpdateScore(0); }

IEnumerator SpawnTarget() {
 while (true) { ... UpdateScore(5); }

private void UpdateScore(int scoreToAdd) {
 score += scoreToAdd;
 scoreText.text = "Score: " + score; }

© Unity 2019 Lesson 5.2 - Keeping Score

4

Step 5: Add score when targets are destroyed

Now that we have a method to update the score, we should call it in the target script whenever
a target is destroyed.

1. In Target.cs, create a reference to private

GameManager gameManager;

2. Initialize GameManager in Start() using the Find()
method

3. In GameManager.cs, make the UpdateScore
method public

4. When a target is destroyed, call UpdateScore(5);,
then delete the method call from SpawnTarget()

- Tip: Feel free to reference old code:
We used script communication in Unit
3 to stop the game on GameOver

- Warning: If you try to call UpdateScore
while it’s private, it won’t work

private GameManager gameManager;

void Start() {
 ... gameManager = GameObject.Find("Game
Manager").GetComponent<GameManager>();}

private void OnMouseDown() {
 Destroy(gameObject); gameManager.UpdateScore(5); }

private public void UpdateScore(int scoreToAdd) { ... }

Step 6: Assign a point value to each target

The score gets updated when targets are clicked, but we want to give each of the targets a
different value. The good objects should vary in point value, and the bad object should subtract
points.

1. In Target.cs, create a new public int pointValue

variable
2. In each of the Target prefab’s inspectors, set the

Point Value to whatever they’re worth, including
the bad target’s negative value

3. Add the new variable to UpdateScore(pointValue);

- Tip: Here’s the beauty of variables at
work. Each target can have their own
unique pointValue!

public int pointValue;

private void OnMouseDown() {
 Destroy(gameObject);

 gameManager.UpdateScore(5 pointValue); }

© Unity 2019 Lesson 5.2 - Keeping Score

5

Step 7: Add a Particle explosion

The score is totally functional, but clicking targets is sort of… unsatisfying. To spice things up,
let’s add some explosive particles whenever a target gets clicked!

1. In Target.cs, add a new public ParticleSystem explosionParticle
variable

2. For each of your target prefabs, assign a particle prefab from
Course Library > Particles to the Explosion Particle variable

3. In the OnMouseDown() function, instantiate a new explosion
prefab

public ParticleSystem explosionParticle;

private void OnMouseDown() {
 Destroy(gameObject);

 Instantiate(explosionParticle, transform.position,
 explosionParticle.transform.rotation);
 gameManager.UpdateScore(pointValue); }

Lesson Recap
New

Functionality

● There is a UI element for score on the screen
● The player’s score is tracked and displayed by the score text when hit a

target
● There are particle explosions when the player gets an object

New Concepts

and Skills

● TextMeshPro
● Canvas
● Anchor Points
● Import Libraries
● Custom methods with parameters
● Calling methods from other scripts

Next Lesson ● We’ll use some UI elements again - this time to tell the player the game is
over and reset our game!

© Unity 2019 Lesson 5.2 - Keeping Score

1

5.3 Game Over

Steps:

Step 1: Create a Game Over text object

Step 2: Make GameOver text appear

Step 3: Create GameOver function

Step 4: Stop spawning and score on GameOver

Step 5: Add a Restart button

Step 6: Make the restart button work

Step 7: Show restart button on game over

Example of project by end of lesson

Length: 60 minutes

Overview: We added a great score counter to the game, but there are plenty of other

game-changing UI elements that we could add. In this lesson, we will create

some “Game Over” text that displays when a “good” target object drops

below the sensor. During game over, targets will cease to spawn and the

score will be reset. Lastly, we will add a “Restart Game” button that allows

the player to restart the game after they have lost.

Project

Outcome:

When a “good” target drops below the sensor at the bottom of the screen,

the targets will stop spawning and a “Game Over” message will display

across the screen. Just underneath the “Game Over” message will be a

“Reset Game” button that reboots the game and resets the score, so the

player can enjoy it all over again.

Learning

Objectives:

By the end of this lesson, you will be able to:

- Make UI elements appear and disappear with .SetActive

- Use Script Communication and Game states to have a working “Game

Over” screen

- Restart the game using a UI button and Scene Management

© Unity 2019 Lesson 5.3 - Game Over

2

Step 1: Create a Game Over text object

If we want some “Game Over” text to appear when the game ends, the first thing we’ll do is

create and customize a new UI text element that says “Game Over”.

1. Right-click on the Canvas, create a new UI >

TextMeshPro - Text object, and rename it “Game

Over Text”

2. In the inspector, edit its Text, Pos X, Pos Y, Font

Asset, Size, Style, Color, and Alignment

3. Set the “Wrapping” setting to “Disabled”

- Tip: The center of the screen is the

best place for this Game Over

message - it grabs the player’s

attention

Step 2: Make GameOver text appear

We’ve got some beautiful Game Over text on the screen, but it’s just sitting and blocking our

view right now. We should deactivate it, so it can reappear when the game ends.

1. In GameManager.cs, create a new public

TextMeshProUGUI gameOverText; and assign the

Game Over object to it in the inspector

2. Uncheck the Active checkbox to deactivate the

Game Over text by default

3. In Start(), activate the Game Over text

- Don’t worry: We’re just doing this

temporarily to make sure it works

public TextMeshProUGUI gameOverText;

void Start() {
 ...

 gameOverText.gameObject.SetActive(true); }

© Unity 2019 Lesson 5.3 - Game Over

3

Step 3: Create GameOver function

We’ve temporarily made the “Game Over” text appear at the start of the game, but we actually

want to trigger it when one of the “Good” objects is missed and falls.

1. Create a new public void GameOver() function, and move the code

that activates the game over text inside it

2. In Target.cs, call gameManager.GameOver() if a target collides

with the sensor

3. Add a new “Bad” tag to the Bad object, add a condition that will

only trigger game over if it’s not a bad object

void Start() {
 ... gameOverText.gameObject.SetActive(true); }

public void GameOver() {
 gameOverText.gameObject.SetActive(true); }

<------>

private void OnTriggerEnter(Collider other) {
 Destroy(gameObject);

 if (!gameObject.CompareTag("Bad")) { gameManager.GameOver(); } }

Step 4: Stop spawning and score on GameOver

The “Game Over” message appears exactly when we want it to, but the game itself continues to

play. In order to truly halt the game and call this a “Game Over’, we need to stop spawning

targets and stop generating score for the player.

1. Create a new public bool isGameActive;

2. As the first line In Start(), set isGameActive = true; and in

GameOver(), set isGameActive = false;

3. To prevent spawning, in the SpawnTarget() coroutine, change

while (true) to while (isGameActive)

4. To prevent scoring, in Target.cs, in the OnMouseDown()

function, add the condition if (gameManager.isGameActive) {

public bool isGameActive;

void Start() { ... isGameActive = true; }

public void GameOver() { ... isGameActive = false; }

IEnumerator SpawnTarget() { while (true isGameActive) { ... }
<------>

private void OnMouseDown() {
 if (gameManager.isGameActive) { ... [all function code moved inside] }}

© Unity 2019 Lesson 5.3 - Game Over

4

Step 5: Add a Restart button

Our Game Over mechanics are working like a charm, but there’s no way to replay the game. In

order to let the player restart the game, we will create our first UI button

1. Right-click on the Canvas and Create > UI > Button

2. Rename the button “Restart Button”

3. Temporarily reactivate the Game Over text in order to reposition the

Restart Button nicely with the text, then deactivate it again

4. Select the Text child object, then edit its Text to say “Restart”, its

Font, Style, and Size

- New Concept:

Buttons

Step 6: Make the restart button work

We’ve added the Restart button to the scene and it LOOKS good, but now we need to make it

actually work and restart the game.

1. In GameManager.cs, add using

UnityEngine.SceneManagement;

2. Create a new void RestartGame() function that

reloads the current scene

3. In the Button’s inspector, click + to add a new On

Click event, drag it in the Game Manager object

and select the GameManager.RestartGame

function

- New Concept: Scene Management

- New Concept: On Click Event

- Don’t worry: The restart button is just

sitting there for now, but we will fix it

later

using UnityEngine.SceneManagement;

void RestartGame() {
 SceneManager.LoadScene(SceneManager.GetActiveScene().name); }

© Unity 2019 Lesson 5.3 - Game Over

5

Step 7: Show restart button on game over

The Restart Button looks great, but we don’t want it in our faces throughout the entire game.

Similar to the “Game Over” message, we will turn off the Restart Button while the game is

active.

1. At the top of GameManager.cs add using UnityEngine.UI;

2. Declare a new public Button restartButton; and assign the

Restart Button to it in the inspector

3. Uncheck the “Active” checkbox for the Restart Button in

the inspector

4. In the GameOver function, activate the Restart Button

- Tip: Adding “using

UnityEngine.UI” allows you to

access the Button class

using UnityEngine.UI;

public Button restartButton;

public void GameOver() { ...
restartButton.gameObject.SetActive(true); }

Lesson Recap

New

Functionality

● A functional Game Over screen with a Restart button

● When the Restart button is clicked, the game resets

New Concepts

and Skills

● Game states

● Buttons

● On Click events

● Scene management Library

● UI Library

● Booleans to control game states

Next Lesson ● In our next lesson, we’ll use buttons to really add some difficulty to our

game

© Unity 2019 Lesson 5.3 - Game Over

1

5.4 What’s the Difficulty?

Steps:
Step 1: Create Title text and menu buttons

Step 2: Add a DifficultyButton script

Step 3: Call SetDifficulty on button click

Step 4: Make your buttons start the game

Step 5: Deactivate Title Screen on StartGame

Step 6: Use a parameter to change difficulty

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final lesson! To finish our game, we will add a Menu and Title

Screen of sorts. You will create your own title, and style the text to make it

look nice. You will create three new buttons that set the difficulty of the

game. The higher the difficulty, the faster the targets spawn!

Project
Outcome:

Starting the game will open to a beautiful menu, with the title displayed

prominently and three difficulty buttons resting at the bottom of the screen.

Each difficulty will affect the spawn rate of the targets, increasing the skill

required to stop “good” targets from falling.

Learning
Objectives:

By the end of this lesson, you will be able to:

- Store UI elements in a parent object to create Menus, UI, or HUD

- Add listeners to detect when a UI Button has been clicked

- Set difficulty by passing parameters into game functions like SpawnRate

© Unity 2019 Lesson 5.4 - What’s the Difficulty?

2

Step 1: Create Title text and menu buttons
The first thing we should do is create all of the UI elements we’re going to need. This includes a

big title, as well as three difficulty buttons.

1. Duplicate your Game Over text to create your Title
Text, editing its name, text and all of its attributes

2. Duplicate your Restart Button and edit its

attributes to create an “Easy Button” button

3. Edit and duplicate the new Easy button to create

a“Medium Button” and a “Hard Button”

- Tip: You can position the title and

buttons however you want, but you

should try to keep them central and

visible to the player

Step 2: Add a DifficultyButton script
Our difficulty buttons look great, but they don’t actually do anything. If they’re going to have

custom functionality, we first need to give them a new script.

1. For all 3 new buttons, in the Button component, in the On Click ()
section, click the minus (-) button to remove the RestartGame

functionality

2. Create a new DifficultyButton.cs script and attach it to all 3
buttons

3. Add using UnityEngine.UI to your imports

4. Create a new private Button button; variable and initialize it in

Start()

using UnityEngine.UI;

private Button button;

void Start() {
 button = GetComponent<Button>(); }

© Unity 2019 Lesson 5.4 - What’s the Difficulty?

3

Step 3: Call SetDifficulty on button click
Now that we have a script for our buttons, we can create a SetDifficulty method and tie that

method to the click of those buttons

1. Create a new void SetDifficulty function, and

inside it, Debug.Log(gameObject.name + " was

clicked");

2. Add the button listener to call the SetDifficulty

function

- New Function: AddListener

- Don’t worry: onClick.AddListener is

similar what we did in the inspector

with the Restart button

- Don’t worry: We’re just using Debug for

testing, to make sure the buttons are

working

void Start() {
 button = GetComponent<Button>();

 button.onClick.AddListener(SetDifficulty); }

void SetDifficulty() {
 Debug.Log(gameObject.name + " was clicked"); }

Step 4: Make your buttons start the game
The Title Screen looks great if you ignore the target objects bouncing around, but we have no

way of actually starting the game. We need a StartGame function that can communicate with

SetDifficulty.

1. In GameManager.cs, create a new public void StartGame()

function and move everything from Start() into it

2. In DifficultyButton.cs, create a new private GameManager

gameManager; and initialize it in Start()

3. In the SetDifficulty() function, call gameManager.startGame();

- Don’t worry: Title objects

don’t disappear yet - we’ll

do that next

void Start() { ... }

public void StartGame() {
 isGameActive = true;
 score = 0;
 StartCoroutine(SpawnTarget());
 UpdateScore(0); }

<------>

private GameManager gameManager;

void Start () { ...
 gameManager = GameObject.Find("Game Manager").GetComponent<GameManager>(); }

SetDifficulty() { ... gameManager.startGame(); }

© Unity 2019 Lesson 5.4 - What’s the Difficulty?

4

Step 5: Deactivate Title Screen on StartGame
If we want the title screen to disappear when the game starts, we should store them in an

empty object rather than turning them off individually. Simply deactivating the single empty

parent object makes for a lot less work.

1. Right-click on the Canvas and Create > Empty Object, rename it “Title

Screen”, and drag the 3 buttons and title onto it

2. In GameManager.cs, create a new public GameObject titleScreen; and

assign it in the inspector

3. In StartGame(), deactivate the title screen object

public GameObject titleScreen;

StartGame() {

 ... titleScreen.gameObject.SetActive(false); }

Step 6: Use a parameter to change difficulty
The difficulty buttons start the game, but they still don’t change the game’s difficulty. The last

thing we have to do is actually make the difficulty buttons affect the rate that target objects

spawn.

1. In DifficultyButton.cs, create a new public int difficulty variable, then

in the Inspector, assign the Easy difficulty as 1, Medium as 2, and

Hard as 3

2. Add an int difficulty parameter to the StartGame() function

3. In StartGame(), set spawnRate /= difficulty;

4. Fix the error in DifficultyButton.cs by passing the difficulty parameter

to StartGame(int difficulty)

- New Concept:
/= operator

public int difficulty;

void SetDifficulty() {
 ... gameManager.startGame(difficulty); }

<------>

public void StartGame(int difficulty) {
 spawnRate /= difficulty; }

© Unity 2019 Lesson 5.4 - What’s the Difficulty?

5

Lesson Recap

New
Functionality

● Title screen that lets the user start the game

● Difficulty selection that affects spawn rate

New Concepts
and Skills

● AddListener()

● Passing parameters between scripts

● Divide/Assign (/=) operator

● Grouping child objects

Next Lesson ● In our next lesson, we’ll use buttons to really add some difficulty to our

game

© Unity 2019 Lesson 5.4 - What’s the Difficulty?

1

Challenge 5
Whack-a-Food

Challenge
Overview:

Put your User Interface skills to the test with this whack-a-mole-like challenge
in which you have to get all the food that pops up on a grid while avoiding the
skulls. You will have to debug buttons, mouse clicks, score tracking, restart
sequences, and difficulty setting to get to the bottom of this one.

Challenge
Outcome:

- All of the buttons look nice with their text properly aligned
- When you select a difficulty, the spawn rate changes accordingly
- When you click a food, it is destroyed and the score is updated in the

top-left
- When you lose the game, a restart button appears that lets you play again

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Working with text and button objects to get them looking the way you want
- Using Unity’s various mouse-related methods appropriately
- Displaying variables on text objects properly using concatenation
- Activating and deactivating objects based on game states
- Passing information between scripts using custom methods and

parameters

Challenge
Instructions:

- Open your Prototype 5 project
- Download the "Challenge 5 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 5 > Instructions folder, use the

"Challenge 5 - Outcome” video as a guide to complete the challenge

© Unity 2019 Challenge 5 - Whack-a-Food

2

Challenge Task Hint

 1 The difficulty buttons
look messy

Center the text on the buttons
horizontally and vertically

If you expand one of the button
objects in the hierarchy, you’ll see a
“Text” object inside - you have to edit
the properties of that “Text” object

 2 The food is being
destroyed too soon

The food should only be
destroyed when the player
clicks on it, not when the
mouse touches it

OnMouseEnter() detects when the
mouse enters an object’s collider -
OnMouseDown() detects when the
mouse clicks on an object’s collider

 3 The Score is being
replaced by the word
“score”

It should always say,
“Score: __“ with the value
displayed after “Score:”

When you set the score text, you have
to add (concatenate) the word
“Score: “ and the actual score value

 4 When you lose, there’s
no way to Restart

Make the Restart button
appear on the game over
screen

In the GameOver() method, make
sure the restart button is being
reactivated

 5 The difficulty buttons
don’t change the
difficulty

The spawn rate is always way
too fast. When you click Easy,
the spawnRate should be
slower - if you click Hard, the
spawnRate should be faster.

There is no information (or
parameter) being passed from the
buttons’ script to the Game
Manager’s script - you need to
implement a difficulty parameter

Bonus Challenge

Task

Hint

 X The game can go on
forever

Add a “Time: __” display that
counts down from 60 in
whole numbers (i.e. 59, 58,
57, etc) and triggers the
game over sequence when it
reaches 0.

Google, “Unity Count down timer C#”.
It will involve subtracting
“Time.deltaTime” and using the
Mathf.Round() method to display only
whole numbers.

© Unity 2019 Challenge 5 - Whack-a-Food

3

Challenge Solution

1 Expand each of the “Easy”, “Medium”, and “Hard” buttons to access their “Text” object
properties, then select the horizontal and vertical alignment buttons in the “Paragraph”
properties

2 In TargetX.cs, change OnMouseEnter() to OnMouseDown()

 private void OnMouseEnter Down() {

3 In GameManagerX.cs, in UpdateScore(), concatenate the word “Score: “ with the score
value:

 public void UpdateScore(int scoreToAdd) {
 score += scoreToAdd;

 scoreText.text = "score" "Score: " + score;
}

4 In GameManagerX.cs, in GameOver(), change SetActive(false) to “true”

 public void GameOver() {
 gameOverText.gameObject.SetActive(true);
 restartButton.gameObject.SetActive(false true);
 ...

}

5 In GameManagerX.cs, in StartGame(), add an “int difficulty” parameter and divide the
spawnRate by it. Then in DifficultyButtonX.cs, in SetDifficulty(), pass in the “difficulty”
value from the buttons.

 GameManagerX.cs

public void StartGame(int difficulty){
 spawnRate /= 5 difficulty;
 ...

}

DifficultyButtonX.cs

void SetDifficulty() {
 ...

 gameManagerX.StartGame(difficulty);
}

© Unity 2019 Challenge 5 - Whack-a-Food

4

Bonus Challenge Solution

X1 Duplicate the “Score Text” object in the hierarchy to create a new “Timer text” object, then in
GameManagerX.cs declare a new TextMeshProUGUI timerText variable and assign it in the
inspector

X2 In GameManagerX.cs, in StartGame(), set your new timerText variable to your starting time

 public void StartGame(int difficulty) {
 ...

 timeLeft = 60;
}

X3 In GameManagerX.cs, add an Update() function that, if the game is active, subtracts from the
timeLeft and sets the timerText to a rounded version of that timeLeft. Then, if timeLeft is less
than zero, calls the game over method.

 private void Update() {
 if (isGameActive) {
 timeLeft -= Time.deltaTime;

 timerText.SetText("Time: " + Mathf.Round(timeLeft));
 if (timeLeft < 0) {
 GameOver();

 }

 }

}

© Unity 2019 Challenge 5 - Whack-a-Food

1

Unit 5 Lab
Swap out your Assets

Steps:

Step 1: Import and browse the asset library

Step 2: Replace player with new asset

Step 3: Browse the Asset store

Step 4: Replace all non-player primitives

Step 5: Replace the background texture

Example of progress by end of lab

Length: 90 minutes

Overview: In this lab, you will finally replace those boring primitive objects with
beautiful dynamic ones. You will either use assets from the provided course
library or browse the asset store for completely new ones to give your game
exactly the look and feel that you want. Then, you will go through the process
of actually swapping in those new assets in the place of your placeholder
primitives. By the end of this lab, your project will be looking a lot better.

Project

Outcome:

All primitive objects are replaced by actual 3D models, retaining the same
basic gameplay functionality.

Learning

Objectives:

By the end of this lesson, you will be able to:
- Browse the asset store to find the perfect assets for your project
- Use Nested Prefabs to swap out placeholder objects with real assets
- Adjust material settings to get the resolution and look you want

© Unity 2019 Lab 5 - Swap out your Assets

2

Step 1: Import and browse the asset library

If we are going to swap out our primitive shapes with cool new assets, we need to import those
assets first.
1. Click on the link to download the Course Library

asset files, then import them into your project
2. Close the Asset Store window
3. Browse through the library to find the assets you

would like to replace your Player and non-player
objects with

- Don’t worry: It will take longer than
normal to import these files because it’s
a lot more files

- Don’t worry: Even if you don’t think
you’re going to use one of these assets
for your player, just choose something
for now to get used to the process

Step 2: Replace player with new asset

Now that we have the assets ready to go, the first thing we’ll do is replace the Player object
1. Drag the Player object into the “Prefabs” folder to make it

a prefab, then double-click on it to open the prefab editor
2. Drag the asset you want into the hierarchy to make it a

nested prefab of the Player, then scale and position it so
that it is around the same size and location

3. On the parent Player object itself, either Edit the collider to
be the size of the new asset or replace it with a different
type of collider (e.g. Box)

4. Test testing to make sure it works, then uncheck the
Mesh Renderer component of the primitive

- New: Nested Prefabs
- Tip: Notice how the asset

updates automatically in game
view

- Tip: Isometric view is useful
when resizing and
repositioning child objects

© Unity 2019 Lab 5 - Swap out your Assets

3

Step 3: Browse the Asset store

Even though we have a really great asset library, there may be certain assets you want that
aren’t in there. In that case, it might be good to try and find assets in the Unity Asset Store.

1. From the top menu, click Window > Asset Store to
open the Asset Store window in Unity, then
right-click on the tab and Maximize it to make it
easier to browse

2. In the Publisher filter, search for “Synty Studios”,
then browse some of their asset packs

3. In the Pricing filter, drag the right handle back to
only view “Free” assets, remove the Synty Studios
filter, and search for “Low Poly”

4. If you see something you want to include in your
project, download and import it into your project

5. Drag the imported assets into a new folder called
“Asset Store”, then browse through the imported
assets

- Warning: This will only be possible if
you can sign into a Unity account

- Explain: The assets for this course
were made by Synty Studios, which
are really good - as you can see, you
normally have to pay for them

- New: Unity Asset Store
- New: “Low Poly” assets
- Warning: Only download “Low Poly”

assets or your project will become
huge, then not web- or
mobile-friendly

- Don’t worry: Even if you think you
have all the assets you need, it’s still
good to take a look

Step 4: Replace all non-player primitives

Now that we know the basic concept of our project, let’s figure out how we’ll get it done.
1. Repeat the process you used to replace the player

prefab with your other non-player objects
2. Test to make sure everything is working as expected

- Warning: Make sure that, if you are
editing prefabs in the scene, to
Override any changes you make

© Unity 2019 Lab 5 - Swap out your Assets

4

Step 5: Replace the background texture

Now that our dynamic objects have a new look, we should update the ground / background too.
1. From the Course Library > Textures, (or from a Unity

Asset Store package), drag a new material onto the
Ground / Background object

2. To adjust the material’s resolution, in the Material
properties (with the sphere next to it), change the
Main Map Tiling X and Y values

3. To make the material less shiny, in the Material
properties, uncheck the “Specular highlights” and
“Reflections” settings

- Tip: You might want to adjust the
resolution/tiling of the material,
depending on the scale of the
objects

- Tip: Natural ground materials like
grass or dirt do not tend to show
highlights or reflections

Lesson Recap
New Progress ● Primitive objects replaced with new assets that function the same way

New Concepts

and Skills

● Art workflow
● High vs. Low Poly
● Asset Store
● Nested Prefabs
● Material properties

© Unity 2019 Lab 5 - Swap out your Assets

1

Quiz Unit 5

QUESTION CHOICES

1 Which of the following follows Unity naming conventions
(especially as they relate to capitalization)?

 a. Line 1
b. Line 2
c. Line 3
d. Line 4 1. public void MultiplyScore(int currentScore) { }

2. public void multiplyScore(int CurrentScore) { }
3. public Void MultiplyScore(Int currentScore) { }
4. public Void MultiplyScore(int CurrentScore) { }

2 If there is a boolean in script A that you want to access

in script B, which of the following are true:
 a. 1 only

b. 1 and 2 only
c. 2 and 3 only
d. 3 and 4 only
e. 1, 2, and 3 only
f. All are true

 1. You need a reference to script A in script B
2. The boolean needs to be public instead of private
3. The boolean must be true
4. The boolean must be included in the Update method

3 Which code to fill in the blank will result in the object
being destroyed?

 a. name = “player” &&
isDead && health < 5

b. name != “player”
&& isDead != true && health > 5

c. name == “player” && !isDead
&& health < 5

d. name == “player” && isDead !=
true && health > 5

 string name = “player”
bool isDead;
float health = 3;

if (________________) {
 Destroy(gameObject);
}

© Unity 2019 Quiz - Unit 5

2

4 You run your game and get the following error message

in the console, “NullReferenceException: Object
reference not set to an instance of an object”. Given the
image and code below, what would resolve the problem?

 a. In the hierarchy, rename “Game
Manager” to “gameManager”

b. In the hierarchy, rename “Game
Manager” as “GameManager”

c. On Line 1, rename
“GameManager” as “Game
Manager”

d. On Line 3, remove the
GetComponent code

1. private GameManager gameManager;
2. void Start() {
3. gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();
4. }

5 Read the Unity documentation below about the
OnMouseDrag event and the code beneath it. What will
the value of the “counter” variable be if the user clicked
and held down the mouse over an object with a collider
for 10 seconds?

 a. 0
b. 1
c. 99
d. 100
e. A value over 100

int counter = 0;
void OnMouseDrag() {
 if (counter < 100) {
 counter++;

 }

}

© Unity 2019 Quiz - Unit 5

3

6 Based on the code below, what will be displayed in the

console when the button is clicked?
 a. “Welcome, Robert Smith”

b. “Welcome, firstName Smith”
c. “Button is ready”
d. “Welcome + Robert + Smith”

 private Button button;
private string firstName = "Robert";

void Start() {
 button = GetComponent<Button>();
 button.onClick.AddListener(DisplayWelcomeMessage);
 Debug.Log("Button is ready");
}

void DisplayWelcomeMessage() {
 Debug.Log("Welcome, " + "firstName" + " Smith");
}

7 You have declared a new Button variable as “private

Button start;”, but there’s an error under the word
“Button” that says “error CS0246: The type or
namespace name 'Button' could not be found (are you
missing a using directive or an assembly reference?)”
What is likely causing that error?

 a. You can’t name a button “start”
because that’s the name of a
Unity Event Function

b. “Button” should be lowercase
“button”

c. You are missing “using
UnityEngine.UI;” from the top of
your class

d. New Button variables must be
made public

8 Look at the documentation and code below. Which of

the following lines would NOT produce an error?
 a. Line 5

b. Line 6
c. Line 7
d. Line 8

© Unity 2019 Quiz - Unit 5

4

1. public Vector3 explosion;
2. Vector3 startPos;
3. float startSpeed;
4. void Start {
5. AddForceAtPosition(50, 0, ForceMode.Impulse)

6. AddForceAtPosition(100, startPos, ForceMode.Impulse)

7. AddForceAtPosition(startSpeed, startPos, ForceMode.Impulse)

8. AddForceAtPosition(explosion, new Vector3(0, 0, 0), ForceMode.Impulse)
9. }

9 If you wanted a button to display the message, “Hello!”

when a button was clicked, what code would you use to
fill in the blank?

 a. (SendMessage);
b. (SendMessage(“Hello”));
c. (SendMessage(string Hello));
d. (SendMessage(Hello));

private Button button;
void Start {
 button = GetComponent<Button>();

 button.onClick.AddListener________________;

}

void SendMessage() {
 Debug.Log(”Hello!”);
}

10 Which of the following is the correct way to declare a

new List of game objects named “enemies”?
 a. Line 1

b. Line 2
c. Line 3
d. Line 4 1. public List[GameObjects] enemies;

2. public List(GameObject) "enemies";
3. public List<GameObjects> "enemies";
4. public List<GameObject> enemies;

© Unity 2019 Quiz - Unit 5

5

Quiz Answer Key

ANSWER EXPLANATION

1 A public void MultiplyScore(int currentScore)
The “public”, “void”, and “int” keywords should be lowercase. Method names
(like “MultiplyScore”) should be Title Case. variable names (like
“currentScore”) should be camelCase.

2 B You always need a variable reference to the script you’re trying to access and
that variable must be public.

3 C To compare a string, two ==’s are needed. By default, booleans are false
unless declared as true and adding an exclamation mark before !isDead
checks that it’s false. Since health = 3, checking “health < 5” is true.

4 B GameObject.Find("GameManager") is returning a NullReferenceException
error because there’s no object in the scene named that. If you renamed the
“Game Manager” in the hierarchy to have no spaces, it would be fixed.

5 D Since the function is called “every frame” the mouse is held, it will be called
hundreds of times in 10 seconds. However, the condition will only be true if
the counter is less than 99, meaning it will no longer increase after 100.

6 B If you wanted it to say “Robert Smith”, you would have needed to use the
variable name, firstName, without quotation marks.

7 C In order to use some of the UI classes like “Button,” you need to include the
“UnityEngine.UI” library

8 D The first two required parameters are Vector3 variables. Only option D uses
Vector3 variables for those parameters.

9 A SendMessage does not require any parameters - it prints “Hello” no matter
what when it is called. Also, when adding a listener, you just need to include
the method’s name - no parentheses are required.

10 D public List<GameObject> enemies is correct. <GameObject> should be in
angle brackets. You don’t need “GameObject” to be plural because it’s the
type of object it is. Variable names are never declared with quotation marks
around them.

© Unity 2019 Quiz - Unit 5

1

6.1 Project Optimization

Techniques:

1: Variable attributes

2: Unity Event Functions

3: Object Pooling

Length: 30 minutes

Overview: In this lesson, you will learn about a variety of different techniques to

optimize your projects and make them more performant. You may not notice

a huge difference in these small prototype projects, but when you’re

exporting a larger project, especially one for mobile or web, every bit of

performance improvement is critical.

Project

Outcome:

Several of your prototype projects will have improved optimization, serving

as examples for you to implement in your personal projects

Learning

Objectives:

By the end of this lesson, you will be able to:

- Recognize and use new variable attributes to keep values private, but still

editable in the inspector

- Use the appropriate Unity Event Functions (e.g. Update vs. FixedUpdate vs.

LateUpdate) to make your project run as smoothly as possible

- Understand the concept of Object Pooling, and appreciate when it can be

used to optimize your project

© Unity 2019 Lesson 6.1 - Project Optimization

2

1: Variable attributes

In the course, we only ever used “public” or “private” variables, but there are a lot of other variable

attributes you should be familiar with.

1. Open your Prototype 1 project and open the

PlayerController.cs script

2. Replace the keyword “private” with [SerializeField],

then edit the values in the inspector

3. In FollowPlayer.cs, add the [SerializeField] attribute to

the Vector3 offset variable

4. Try applying the “readonly”, “const”, or “static”

attributes, noticing that all have the effect of removing

the variable from the inspector

- New Concept: using [SerializeField]

instead of public attribute

- Tip: “protected” is very similar to

“private”, but would also allow

access to derived classes

[SerializeField] private float speed = 30.0f;
[SerializeField] private float turnSpeed = 50.0f;

[SerializeField] private Vector3 offset = new Vector3(0, 5, -7);

2: Unity Event Functions

In the course we only ever used the default Update() and Start() event functions, but there are others

you might want to use in different circumstances

1. Duplicate your main Camera, rename it “Secondary

Camera”, then deactivate the Main Camera

2. Reposition the Secondary camera in a first-person

view, then edit the offset variable to match that

position

3. Run your project and notice how choppy it is

4. In PlayerController.cs, change “Update” to

“FixedUpdate”, and in FollowPlayer.cs, change

“Update” to “LateUpdate”, then test again

5. Delete the Start() function in both scripts, then

reactivate your Main Camera

- New Concept: “Event Functions”

are Unity’s default methods that

run in a very particular order over

the life of a script (e.g. Start and

Update)

- New Concept: Update vs

FixedUpdate vs LateUpdate

- New Concept: Awake vs Start

- Tip: If you’re not using Start or

Update, it’s cleaner to delete them

PlayerController.cs

void FixedUpdate() { ...

FollowPlayer.cs

void LateUpdate() { ...

© Unity 2019 Lesson 6.1 - Project Optimization

3

3: Object Pooling

Throughout the course, we’ve created a lot of prototypes that instantiated and destroyed objects during

gameplay, but there’s actually a more performant / efficient way to do that called Object Pooling.

1. Open Prototype 2 and create a backup

2. Download the Object Pooling unity

package and import it into your scene

3. Reattach the PlayerController script to

your player and reattach the

DetectCollisions script to your animal

prefabs (not to your food prefab)

4. Attach the ObjectPooler script to your

Spawn Manager, drag your projectile

into the “Objects To Pool” variable, and

set the “Amount To Pool” to 20

5. Run your project and see how the

projectiles are activated and deactivated

- Warning: You will be overwriting your old work

with this new system, so it’s important to make a

backup first in case you want to revert back

- New Concept: Object Pooling: creating a

reusable “pool” of objects that can be activated

and deactivated rather than instantiated and

destroyed, which is much more performant

- Tip: Try reading through the new code in the

ObjectPooler and PlayerController scripts

- Don’t worry: If your project is small enough that

you’re not experiencing any performance issues,

you probably don’t have to implement this

Lesson Recap

New Concepts

and Skills

● Optimization

● Serialized Fields

● readonly / const / static / protected

● Event Functions

● FixedUpdate() vs. Update() vs. LateUpdate()

● Awake() vs. Start()

● Object Pooling

© Unity 2019 Lesson 6.1 - Project Optimization

1

6.2 Research and Troubleshooting

Steps:

Step 1: Make the vehicle use forces

Step 2: Prevent car from flipping over

Step 3: Add a speedometer display

Step 4: Add an RPM display

Step 5: Prevent driving in mid-air

Example of project by end of lesson

Length: 75 minutes

Overview: In this lesson, you will attempt to add a speedometer and RPM display for

your vehicle in Prototype 1. In doing so, you will learn the process of doing

online research when trying to implement new features and troubleshoot

bugs in your projects. As you will find out, adding a new feature is very rarely

as simple as it initially seems - you inevitably run into unexpected

complications and errors that usually require a little online research. In this

lesson, you will learn how to do that so that you can do it with your own

projects.

Project

Outcome:

By the end of this lesson, the vehicle will behave with more realistic physics,

and there will be a speedometer and Revolution per Minute (RPM) display.,

Learning

Objectives:

By the end of this lesson, you will be able to:

- Use Unity Forums, Unity Answers, and the online Unity Scripting

Documentation to implement new features and troubleshoot issues with

your projects

© Unity 2019 Lesson 6.2 - Using Unity’s Online Resources

2

Step 1: Make the vehicle use forces

If we’re going to implement a speedometer, the first thing we have to do is make the vehicle accelerate

and decelerate more like a real car, which uses forces - as opposed to the Translate method.

1. Open your Prototype 1 project and make a backup

2. Replace the Translate call with an AddForce call on

the vehicle’s Rigidbody, renaming the “speed” variable

to “horsePower”

3. Increase the horsePower to be able to actually move

the vehicle

4. To make the vehicle move in the appropriate direction,

change AddForce to AddRelativeForce

- New Concept: using Unity

Documentation

- New Concept: using Unity Answers

- New Concept: AddRelativeForce

- Don’t worry: Still a big issue where

the vehicle can drive in air and that

it flips over super easily!

private Rigidbody playerRb;

void Start() {
 playerRb = GetComponent<Rigidbody>();
}

void FixedUpdate() {
 transform.Translate(Vector3.forward * speed * verticalInput);
 playerRb.AddRelativeForce(Vector3.forward * verticalInput * horsePower);
}

© Unity 2019 Lesson 6.2 - Using Unity’s Online Resources

3

Step 2: Prevent car from flipping over

Now that we’ve implemented real physics on the vehicles, it is very easy to overturn. We need to figure

out a way to make our vehicle safer to drive.

1. Add wheel colliders to the wheels of your vehicle and

edit their radius and center position, then disable any

other colliders on the wheels

2. Create a new GameObject centerOfMass variable, then

in Start(), assign the playerRb variable to the

centerOfMass position

3. Create a new Empty Child object for the vehicle called

“Center Of Mass”, reposition it, and assign it to the

Center Of Mass variable in the inspector

4. Test different center of mass positions, speed, and

turn speed values to get the car to steer as you like

- New Concept: Wheel colliders

- New Concept: Center of Mass

- Don’t Worry: We can still drive the

vehicle when it’s sideways or

upside down

- Warning: This is still not the proper

way to do vehicles - should actually

be rotating / turning the wheels

[SerializeField] GameObject centerOfMass;

void Start() {
 playerRb.centerOfMass = centerOfMass.transform.position;
}

Step 3: Add a speedometer display

Now that we have our vehicle in a semi-drivable state, let’s display the speed on the User Interface.

1. Add a new TextMeshPro - Text object for your “Speedometer Text”

2. Import the TMPro library, then create and assign new create a

new TextMeshProUGUI variable for your speedometerText

3. Create a new float variables for your speed

4. In Update(), calculate the speed in mph or kph then display those

values on the UI

- Warning: Will be going

fast through adding

the text, since we did

this in prototype 5

- New Concept:

RoundToInt

using TMPro;

[SerializeField] TextMeshProUGUI speedometerText;
[SerializeField] float speed;

private void Update() {
 speed = Mathf.Round(playerRb.velocity.magnitude * 2.237f); // 3.6 for kph
 speedometerText.SetText("Speed: " + speed + "mph");
}

© Unity 2019 Lesson 6.2 - Using Unity’s Online Resources

4

Step 4: Add an RPM display

One other cool feature that a lot of car simulators have is a display of the RPM (Revolutions per Minute)

- the tricky part is figuring out how to calculate it.

1. Create a new “RPM Text” object, then create and

assign a new rpmText variable for it

2. In Update(), calculate the the RPMs using the

Modulus/Remainder operator (%), then display that

value on the UI

- New Concept: Modulus / Remainder

(%) operator

[SerializeField] TextMeshProUGUI rpmText;
[SerializeField] float rpm;

private void Update() {
 rpm = Mathf.Round((speed % 30)*40);
 rpmText.SetText("RPM: " + rpm);
}

© Unity 2019 Lesson 6.2 - Using Unity’s Online Resources

5

Step 5: Prevent driving in mid-air

Now that we have a mostly functional vehicle, there’s one other big bug we should try to fix: the car can

still accelerate/decelerate, turn, and increase in speed/rpm in mid-air!

1. Declare a new List of WheelColliders named allWheels (or

frontWheels/backWheels), then assign each of your wheels

to that list in the inspector

2. Declare a new int wheelsOnGround

3. Write a bool IsOnGround() method that returns true if all

wheels are on the ground and false if not

4. Wrap the acceleration, turning, and speed/rpm functionality

in if-statements that check if the car is on the ground

- New Concept: looping

through lists

- New Concept: custom

methods with bool returns

- Tip: if you use frontWheels or

backWheels, make sure you

only drag in two wheels and

only test that

wheelsOnGround == 2

[SerializeField] List<WheelCollider> allWheels;
[SerializeField] int wheelsOnGround;

if (IsOnGround()) {[ACCELERATION], [ROTATION], [SPEED/RPM]}

bool IsOnGround () {
 wheelsOnGround = 0;

 foreach (WheelCollider wheel in allWheels) {
 if (wheel.isGrounded) {
 wheelsOnGround++;

 }

 }

 if (wheelsOnGround == 2) {
 return true;
 } else {
 return false;
 }

}

Lesson Recap

New Concepts

and Skills

● Searching on Unity Answers, Forum, Scripting API

● Troubleshooting to resolve bugs

● AddRelativeForce, Center of Mass, RoundToInt

● Modulus/Remainder (%) operator

● Looping through lists

● Custom methods with bool return

© Unity 2019 Lesson 6.2 - Using Unity’s Online Resources

1

6.3 Sharing your Projects

Steps:
Step 1: Install export Modules

Step 2: Build your game for Mac or Windows

Step 3: Build your game for WebGL

Example of project by end of lesson

Length: 30 minutes

Overview: In this lesson, you will learn how to build your projects so that they’re
playable outside of the Unity interface. First, you will install the necessary
export modules to be able to publish your projects. After that, you will build
your project as a standalone app to be played on Mac or PC computers.
Finally, you will export your project for WebGL and even upload it to a game
sharing site so that you can send it to your friends and family.

Project
Outcome:

Your project will be exported and playable as a standalone app on Mac/PC or
for embedding online.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Add and manage export modules for your Unity installs so you can choose

which platforms to build for
- Build your projects for Mac or PC so they can be played as standalone

apps
- Build your projects for WebGL so they can be uploaded and embedded

online and shared with a single URL

© Unity 2019 Lesson 6.3 - Sharing your Projects

2

Step 1: Install export Modules
Before we can export our projects, we need to add the “Export Modules” that will allow us to export for
particular platforms.
1. Open Unity Hub and click to Add Modules to the

version of Unity you have used in the course
2. Select WebGL Build Support, and either Mac or

Windows build support, then click Done and wait for
the installation to complete

- Tip - Mac and Windows will create
apps for your computer and WebGL
will allow you to publish online

- Tip - you should see little icons
appear when it is complete

- Tip - WebGL is nice because you
can more easily share it online and
it is platform-independent

© Unity 2019 Lesson 6.3 - Sharing your Projects

3

Step 2: Build your game for Mac or Windows
Now that we have the export modules installed, we can put them to use and export one of our projects
1. Open the project you would like to build (could be a

prototype or your personal project)
2. In Unity, click File > Build Settings, then click Add

Open Scenes to add your scene
3. Click Player Settings and adjust any settings you

want, including making it “Windowed”, “Resizable”,
and whether or not you want to enable the “Display
Resolution Dialog”

4. Click Build, name your project, and save it inside a
new folder inside your Create with Code folder called
“Builds”

5. Play your game to test it out, then if you want, rebuild
it with different settings

- Don’t worry - a prototype that’s not
fully playable will be problematic
when you share it because the user
will have to close and reopen it to
play it again, but that’s OK for now

- Tip - since it’s just a mini-game, it
might be better to use “Windowed”
- this also allows the player to more
easily exit since we don’t have a
full UI to do that

- Don’t worry - on Windows, you have
an .exe file and a Data folder - on
Mac, you just have a .app file

- Warning - it’s kind of hard to
distribute these as is because
most email clients are cautious of
executables like this

© Unity 2019 Lesson 6.3 - Sharing your Projects

4

Step 3: Build your game for WebGL
Since it is pretty hard to distribute your games on Mac or Windows, it’s a good idea to make your
projects available online by building for WebGL.
1. Reopen the Build Settings menu, select WebGL,

then click Switch Platform
2. Click Build, then save in your “Builds” folder with “

- WebGL” in the name
3. Try clicking on index.html to run your project (you

may have to try opening with different browsers)
4. Right-click on your WebGL build folder and

Compress/Zip it into a .zip file
5. If you want, upload it to a game sharing site like

itch.io

- Warning - it’s easy to forget to click
“Switch platform” and can be confusing

- Don’t worry - building for WebGL can
take a long time

- Warning - some browsers do not
support opening WebGL programs from
your computer

- Tip - If uploading your game to a site
like itch.io, make sure to choose
“HTML” format and to “Play in browser”

Lesson Recap

New Concepts
and Skills

● Installing export modules
● Building for Mac/PC
● Building for WebGL/HTML

© Unity 2019 Lesson 6.3 - Sharing your Projects

